Secondary Wall (secondary + wall)

Distribution by Scientific Domains

Terms modified by Secondary Wall

  • secondary wall formation

  • Selected Abstracts


    Walls are thin 1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast-localized protein required for secondary wall formation in fibers

    THE PLANT JOURNAL, Issue 3 2010
    Philippe Ranocha
    Summary By combining Zinnia elegans in vitro tracheary element genomics with reverse genetics in Arabidopsis, we have identified a new upstream component of secondary wall formation in xylary and interfascicular fibers. Walls are thin 1 (WAT1), an Arabidopsis thaliana homolog of Medicago truncatula NODULIN 21 (MtN21), encodes a plant-specific, predicted integral membrane protein, and is a member of the plant drug/metabolite exporter (P-DME) family (transporter classification number: TC 2.A.7.3). Although WAT1 is ubiquitously expressed throughout the plant, its expression is preferentially associated with vascular tissues, including developing xylem vessels and fibers. WAT1:GFP fusion protein analysis demonstrated that WAT1 is localized to the tonoplast. Analysis of wat1 mutants revealed two cell wall-related phenotypes in stems: a defect in cell elongation, resulting in a dwarfed habit and little to no secondary cell walls in fibers. Secondary walls of vessel elements were unaffected by the mutation. The secondary wall phenotype was supported by comparative transcriptomic and metabolomic analyses of wat1 and wild-type stems, as many transcripts and metabolites involved in secondary wall formation were reduced in abundance. Unexpectedly, these experiments also revealed a modification in tryptophan (Trp) and auxin metabolism that might contribute to the wat1 phenotype. Together, our data demonstrate an essential role for the WAT1 tonoplast protein in the control of secondary cell wall formation in fibers. [source]


    Tension wood as a model for functional genomics of wood formation

    NEW PHYTOLOGIST, Issue 1 2004
    Gilles Pilate
    Summary Wood is a complex and highly variable tissue, the formation of which is developmentally and environmentally regulated. In reaction to gravitropic stimuli, angiosperm trees differentiate tension wood, a wood with specific anatomical, chemical and mechanical features. In poplar the most significant of these features is an additional layer that forms in the secondary wall of tension wood fibres. This layer is mainly constituted of cellulose microfibrils oriented nearly parallel to the fibre axis. Tension wood formation can be induced easily and strongly by bending the stem of a tree. Located at the upper side of the bent stem, tension wood can be compared with the wood located on its lower side. Therefore tension wood represents an excellent model for studying the formation of xylem cell walls. This review summarizes results recently obtained in the field of genomics on tension wood. In addition, we present an example of how the application of functional genomics to tension wood can help decipher the molecular mechanisms responsible for cell wall characteristics such as the orientation of cellulose microfibrils. [source]


    Persistence of the gelatinous layer within altered tension-wood fibres of beech degraded by Ustulina deusta

    NEW PHYTOLOGIST, Issue 2 2000
    S. BAUM
    The gelatinous layer (G-layer) of tension-wood fibres in reaction wood of beech showed alterations as a result of the physiological processes involved in the conversion of sapwood into false heartwood or reaction-zone tissue. Using transmitted-light, fluorescence and UV microscopy, polyphenolic compounds were found to infiltrate and encrust the cellulose microfibrils within the G-layer. Experiments with naturally infected and artificially inoculated wood showed that these processes affect the rate and mode of degradation by wood-decaying fungi. Thus, although the ascomycete Ustulina deusta was able to degrade the G-layer from within the lumina of tension-wood fibres in unaltered sapwood, it failed to do so for a prolonged period within false heartwood and reaction zones. In both situations, however, there was some degradation of the underlying secondary wall in the form of erosion troughs which can be attributed to soft rot ,type II', and internal cavity formation typical for ,type I' attack. The present study indicates that not only cell type, but also alterations in the cell wall structure, affect the activity and degradation mode of decay fungi in beech. [source]


    The cell wall and secretory proteome of a tobacco cell line synthesising secondary wall

    PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 9 2009
    David J. Millar
    Abstract The utility of plant secondary cell wall biomass for industrial and biofuel purposes depends upon improving cellulose amount, availability and extractability. The possibility of engineering such biomass requires much more knowledge of the genes and proteins involved in the synthesis, modification and assembly of cellulose, lignin and xylans. Proteomic data are essential to aid gene annotation and understanding of polymer biosynthesis. Comparative proteomes were determined for secondary walls of stem xylem and transgenic xylogenic cells of tobacco and detected peroxidase, cellulase, chitinase, pectinesterase and a number of defence/cell death related proteins, but not marker proteins of primary walls such as xyloglucan endotransglycosidase and expansins. Only the corresponding detergent soluble proteome of secretory microsomes from the xylogenic cultured cells, subjected to ion-exchange chromatography, could be determined accurately since, xylem-specific membrane yields were of poor quality from stem tissue. Among the 109 proteins analysed, many of the protein markers of the ER such as BiP, HSP70, calreticulin and calnexin were identified, together with some of the biosynthetic enzymes and associated polypeptides involved in polymer synthesis. However 53% of these endomembrane proteins failed identification despite the use of two different MS methods, leaving considerable possibilities for future identification of novel proteins involved in secondary wall polymer synthesis once full genomic data are available. [source]


    Isolation and proteomic alalysis of cell wall-deficient Haematococcus pluvialis mutants

    PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 18 2005
    Sheng-Bing Wang
    Abstract The green alga Haematococcus pluvialis has a plant-like cell wall consisting of glycoproteins and cellulose that is modified during the cell cycle and under various conditions. These features allow Haematococcus to be used as a model organism for studying cell wall biology. Development of the Haematococcus model is hampered by the absence of mutants that could provide insight into the biosynthesis and assembly of wall components. Haematococcus mutants (WM#537 and WM#2978) (WM#wall mutant) with defective cell walls were obtained by chemical mutagenesis. WM#537 features a secondary wall of considerably reduced thickness, whereas WM#2978 possesses a somewhat reduced secondary wall with little intervening space between the wall and plasmalemma. 2-DE revealed that a majority of the cell wall proteins were present in the wild-type and mutant cell walls throughout the cell cycle. PMF identified 55 wall protein orthologs from these strains, including a subset of induced proteins known to be involved in wall construction, remodeling, and defense. Down-regulation of certain wall proteins in the two mutants was associated with the wall defects, whereas overexpression of other proteins may have compensated for the defective walls in the two mutants. [source]


    Interrelation between Lignin Deposition and Polysaccharide Matrices during the Assembly of Plant Cell Walls

    PLANT BIOLOGY, Issue 1 2002
    K. Ruel
    Abstract: The modifications caused by genetic down-regulation of the enzyme cinnamoyl CoA reductase (CCR) from monolignol biosynthetic pathways on tobacco and Arabidopsis thaliana were investigated at the ultrastructural level. A typical result was that the same transformation led to similar abnormality in secondary wall formation of fibres in both plants. The cell wall alterations mainly consisted in an important disorganization and loosening of cellulose microfibrils in the inner part of the S2 layer. This inability of the transformants to form a coherent cell wall coincided with a lack of synthesis of non-condensed forms of lignin in this disorganized region of the wall, as demonstrated by immunolabelling of lignin subunits. A similar disorganization was observed during fibre wall formation in the differentiating tissues of young Populus and A. thaliana plants. The transitory lack of organization of cellulose microfibrils, also coincided with a depletion in non-condensed forms of lignins. These results suggest that such lignin substructures may be involved in the cohesion of secondary walls during cell wall biogenesis. The mutual influence of the cellulose-hemicellulose environment and monolignol local polymerization is discussed. [source]


    The cell wall and secretory proteome of a tobacco cell line synthesising secondary wall

    PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 9 2009
    David J. Millar
    Abstract The utility of plant secondary cell wall biomass for industrial and biofuel purposes depends upon improving cellulose amount, availability and extractability. The possibility of engineering such biomass requires much more knowledge of the genes and proteins involved in the synthesis, modification and assembly of cellulose, lignin and xylans. Proteomic data are essential to aid gene annotation and understanding of polymer biosynthesis. Comparative proteomes were determined for secondary walls of stem xylem and transgenic xylogenic cells of tobacco and detected peroxidase, cellulase, chitinase, pectinesterase and a number of defence/cell death related proteins, but not marker proteins of primary walls such as xyloglucan endotransglycosidase and expansins. Only the corresponding detergent soluble proteome of secretory microsomes from the xylogenic cultured cells, subjected to ion-exchange chromatography, could be determined accurately since, xylem-specific membrane yields were of poor quality from stem tissue. Among the 109 proteins analysed, many of the protein markers of the ER such as BiP, HSP70, calreticulin and calnexin were identified, together with some of the biosynthetic enzymes and associated polypeptides involved in polymer synthesis. However 53% of these endomembrane proteins failed identification despite the use of two different MS methods, leaving considerable possibilities for future identification of novel proteins involved in secondary wall polymer synthesis once full genomic data are available. [source]