Secondary Structural Changes (secondary + structural_change)

Distribution by Scientific Domains


Selected Abstracts


Poly(L-lysine) as a model drug macromolecule with which to investigate secondary structure and membrane transport, part I: physicochemical and stability studies

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 3 2002
Montakarn Chittchang
Low oral bioavailability of therapeutic peptides and proteins generally results from their poor permeability through biological membranes and enzymatic degradation in the gastrointestinal tract. Since different secondary structures exhibit different physicochemical properties such as hydrophobicity, size and shape, changing the secondary structure of a therapeutic polypeptide may be another approach to increasing its membrane permeation. Poly(L-lysine) was used as a model polypeptide. The objectives of this study were to induce secondary structural changes in poly(L-lysine) and to determine the time course over which a given conformer was retained. In addition, the hydrophobicity of each secondary structure of poly(L-lysine) was assessed. The circular dichroism (CD) studies demonstrated that the conditions employed could successfully induce the desired secondary structural changes in poly(L-lysine). The ,-helix conformer appeared to be more stable at 25° C whereas the ,-sheet conformer could be preserved at 37° C. On the other hand, the random coil conformer was retained at both temperatures. Significant losses of the ,-helix and the ,-sheet conformers were observed when the pH was reduced. The change in ionic strength did not affect any of the conformers. The octanol/buffer partitioning studies indicated that the ,-helix and the ,-sheet conformers exhibited significantly different (P< 0.05) hydrophobicities. In conclusion, variation of pH and temperature conditions can be used to induce secondary structural changes in poly(L-lysine). These changes are reversible when the stimuli are removed. The ,-helix and the ,-sheet conformers of poly(L-lysine) are more lipophilic than the native random coil conformer. Thus, poly(L-lysine) may represent an ideal model polypeptide with which to further investigate the effects of secondary structure on membrane diffusion or permeation. [source]


Increased aggregation propensity of IgG2 subclass over IgG1: Role of conformational changes and covalent character in isolated aggregates

PROTEIN SCIENCE, Issue 9 2010
Heather Franey
Abstract Aggregation of human therapeutic antibodies represents a significant hurdle to product development. In a test across multiple antibodies, it was observed that IgG1 antibodies aggregated less, on average, than IgG2 antibodies under physiological pH and mildly elevated temperature. This phenomenon was also observed for IgG1 and IgG2 subclasses of anti-streptavidin, which shared 95% sequence identity but varied in interchain disulfide connectivity. To investigate the structural and covalent changes associated with greater aggregation in IgG2 subclasses, soluble aggregates from the two forms of anti-streptavidin were isolated and characterized. Sedimentation velocity analytical ultracentrifugation (SV-AUC) measurements confirmed that the aggregates were present in solution, and revealed that the IgG1 aggregate was composed of a predominant species, whereas the IgG2 aggregate was heterogeneous. Tertiary structural changes accompanied antibody aggregation as evidenced by greater ANS (8-Anilino-1-naphthalene sulfonic acid) binding to the aggregates over monomer, and differences in disulfide character and tryptophan environments between monomer, oligomer and aggregate species, as observed by near-UV circular dichroism (CD). Differences between subclasses were observed in the secondary structural changes that accompanied aggregation, particularly in the intermolecular ,-sheet and turn structures between the monomer and aggregate species. Free thiol determination showed ,2.4-fold lower quantity of free cysteines in the IgG1 subclass, consistent with the 2.4-fold reduction in aggregation of the IgG1 form when compared with IgG2 under these conditions. These observations suggested an important role for disulfide bond formation, as well as secondary and tertiary structural transitions, during antibody aggregation. Such degradations may be minimized using appropriate formulation conditions. [source]


Determination of the secondary structure of proteins in different environments by FTIR-ATR spectroscopy and PLS regression

BIOPOLYMERS, Issue 11 2008
Yeqiu Wang
Abstract The secondary structures of proteins (,-helical, ,-sheet, ,-turn, and random coil) in the solid state and when bound to polymer beads, containing immobilized phenyl and butyl ligands such as those as commonly employed in hydrophobic interaction chromatography, have been investigated using FTIR-ATR spectroscopy and partial least squares (PLS) methods. Proteins with known structural features were used as models, including 12 proteins in the solid state and 7 proteins adsorbed onto the hydrophobic surfaces. A strong PLS correlation was achieved between predictions derived from the experimental data for 4 proteins adsorbed onto the phenyl-modified beads and reference data obtained from the X-ray crystallographic structures with r2 values of 0.9974, 0.9864, 0.9924, and 0.9743 for ,-helical, ,-sheet, ,-turn, and random coiled structures, respectively. On the other hand, proteins adsorbed onto the butyl sorbent underwent greater secondary structural changes compared to the phenyl sorbent as evidenced from the poorer PLS r2 values (r2 are 0.9658, 0.9106, 0.9571, and 0.9340). The results thus indicate that the secondary structures for these proteins were more affected by the butyl sorbent, whereas the secondary structure remains relatively unchanged for the proteins adsorbed onto the phenyl sorbent. This study has important ramifications for understanding the nature of protein secondary structural changes following adsorption onto hydrophobic sorbent surfaces. This knowledge could also enable the development of useful protocols for enhancing the chromatographic purification of proteins in their native bioactive states. © 2008 Wiley Periodicals, Inc. Biopolymers 89: 895,905, 2008. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]