Secondary Somatosensory Cortex (secondary + somatosensory_cortex)

Distribution by Scientific Domains


Selected Abstracts


Long-range connectivity of mouse primary somatosensory barrel cortex

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2010
Rachel Aronoff
Abstract The primary somatosensory barrel cortex processes tactile vibrissae information, allowing rodents to actively perceive spatial and textural features of their immediate surroundings. Each whisker on the snout is individually represented in the neocortex by an anatomically identifiable ,barrel' specified by the segregated termination zones of thalamocortical axons of the ventroposterior medial nucleus, which provide the primary sensory input to the neocortex. The sensory information is subsequently processed within local synaptically connected neocortical microcircuits, which have begun to be investigated in quantitative detail. In addition to these local synaptic microcircuits, the excitatory pyramidal neurons of the barrel cortex send and receive long-range glutamatergic axonal projections to and from a wide variety of specific brain regions. Much less is known about these long-range connections and their contribution to sensory processing. Here, we review current knowledge of the long-range axonal input and output of the mouse primary somatosensory barrel cortex. Prominent reciprocal projections are found between primary somatosensory cortex and secondary somatosensory cortex, motor cortex, perirhinal cortex and thalamus. Primary somatosensory barrel cortex also projects strongly to striatum, thalamic reticular nucleus, zona incerta, anterior pretectal nucleus, superior colliculus, pons, red nucleus and spinal trigeminal brain stem nuclei. These long-range connections of the barrel cortex with other specific cortical and subcortical brain regions are likely to play a crucial role in sensorimotor integration, sensory perception and associative learning. [source]


The neural control of bimanual movements in the elderly: Brain regions exhibiting age-related increases in activity, frequency-induced neural modulation, and task-specific compensatory recruitment

HUMAN BRAIN MAPPING, Issue 8 2010
Daniel J. Goble
Abstract Coordinated hand use is an essential component of many activities of daily living. Although previous studies have demonstrated age-related behavioral deficits in bimanual tasks, studies that assessed the neural basis underlying such declines in function do not exist. In this fMRI study, 16 old and 16 young healthy adults performed bimanual movements varying in coordination complexity (i.e., in-phase, antiphase) and movement frequency (i.e., 45, 60, 75, 90% of critical antiphase speed) demands. Difficulty was normalized on an individual subject basis leading to group performances (measured by phase accuracy/stability) that were matched for young and old subjects. Despite lower overall movement frequency, the old group "overactivated" brain areas compared with the young adults. These regions included the supplementary motor area, higher order feedback processing areas, and regions typically ascribed to cognitive functions (e.g., inferior parietal cortex/dorsolateral prefrontal cortex). Further, age-related increases in activity in the supplementary motor area and left secondary somatosensory cortex showed positive correlations with coordinative ability in the more complex antiphase task, suggesting a compensation mechanism. Lastly, for both old and young subjects, similar modulation of neural activity was seen with increased movement frequency. Overall, these findings demonstrate for the first time that bimanual movements require greater neural resources for old adults in order to match the level of performance seen in younger subjects. Nevertheless, this increase in neural activity does not preclude frequency-induced neural modulations as a function of increased task demand in the elderly. Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc. [source]


Cortical and subcortical correlates of functional electrical stimulation of wrist extensor and flexor muscles revealed by fMRI

HUMAN BRAIN MAPPING, Issue 3 2009
Armin Blickenstorfer
Abstract The main scope of this study was to test the feasibility and reliability of FES in a MR-environment. Functional Electrical Stimulation (FES) is used in the rehabilitation therapy of patients after stroke or spinal cord injury to improve their motor abilities. Its principle lies in applying repeated electrical stimulation to the relevant nerves or muscles for eliciting either isometric or concentric contractions of the treated muscles. In this study we report cerebral activation patterns in healthy subjects undergoing fMRI during FES stimulation. We stimulated the wrist extensor and flexor muscles in an alternating pattern while BOLD-fMRI was recorded. We used both block and event-related designs to demonstrate their feasibility for recording FES activation in the same cortical and subcortical areas. Six out of fifteen subjects repeated the experiment three times within the same session to control intraindividual variance. In both block and event-related design, the analysis revealed an activation pattern comprising the contralateral primary motor cortex, primary somatosensory cortex and premotor cortex; the ipsilateral cerebellum; bilateral secondary somatosensory cortex, the supplementary motor area and anterior cingulate cortex. Within the same subjects we observed a consistent replication of the activation pattern shown in overlapping regions centered on the peak of activation. Similar time course within these regions were demonstrated in the event-related design. Thus, both techniques demonstrate reliable activation of the sensorimotor network and eventually can be used for assessing plastic changes associated with FES rehabilitation treatment. Hum Brain Mapp, 2009. © 2008 Wiley-Liss, Inc. [source]


Timing and connectivity in the human somatosensory cortex from single trial mass electrical activity

HUMAN BRAIN MAPPING, Issue 4 2002
Andreas A. Ioannides
Abstract Parallel-distributed processing is ubiquitous in the brain but often ignored by experimental designs and methods of analysis, which presuppose sequential and stereotypical brain activations. We introduce here a methodology that can effectively deal with sequential and distributed activity. Regional brain activations elicited by electrical median nerve stimulation are identified in tomographic estimates extracted from single trial magnetoencephalographic signals. Habituation is identified in both primary somatosensory cortex (SI) and secondary somatosensory cortex (SII), often interrupted by resurgence of strong activations. Pattern analysis is used to identify single trials with homogeneous regional brain activations. Common activity patterns with well-defined connectivity are identified within each homogeneous group of single trials across the subjects studied. On the contralateral side one encounters distinct sets of single trials following identical stimuli. We observe in one set of trials sequential activation from SI to SII and insula with onset of SII at 60 msec, whereas in the other set simultaneous early co-activations of the same two areas. Hum. Brain Mapping 15:231,246, 2002. © 2002 Wiley-Liss, Inc. [source]


Levodopa affects functional brain networks in parkinsonian resting tremor,

MOVEMENT DISORDERS, Issue 1 2009
Bettina Pollok PhD
Abstract Resting tremor in idiopathic Parkinson's disease (PD) is associated with an oscillatory network comprising cortical as well as subcortical brain areas. To shed light on the effect of levodopa on these network interactions, we investigated 10 patients with tremor-dominant PD and reanalyzed data in 11 healthy volunteers mimicking PD resting tremor. To this end, we recorded surface electromyograms of forearm muscles and neuromagnetic activity using a 122-channel whole-head magnetometer (MEG). Measurements were performed after overnight withdrawal of levodopa (OFF) and 30 min after oral application of fast-acting levodopa (ON). During OFF, patients showed the typical antagonistic resting tremor. Using the analysis tool Dynamic Imaging of Coherent Sources, we identified the oscillatory network associated with tremor comprising contralateral primary sensorimotor cortex (S1/M1), supplementary motor area (SMA), contralateral premotor cortex (PMC), thalamus, secondary somatosensory cortex (S2), posterior parietal cortex (PPC), and ipsilateral cerebellum oscillating at 8 to 10 Hz. After intake of levodopa, we found a significant decrease of cerebro-cerebral coupling between thalamus and motor cortical areas. Similarly, in healthy controls mimicking resting tremor, we found a significant decrease of functional interaction within a thalamus,premotor,motor network during rest. However, in patients with PD, decrease of functional interaction between thalamus and PMC was significantly stronger when compared with healthy controls. These data support the hypothesis that (1) in patients with PD the basal ganglia and motor cortical structures become more closely entrained and (2) levodopa is associated with normalization of the functional interaction between thalamus and motor cortical areas. © 2008 Movement Disorder Society [source]


Functional MRI of the rodent somatosensory pathway using multislice echo planar imaging,

MAGNETIC RESONANCE IN MEDICINE, Issue 1 2004
Shella D. Keilholz
Abstract A multislice EPI sequence was used to obtain functional MR images of the entire rat brain with BOLD contrast at 11.7 T. Ten to 11 slices covering the rat brain, with an in-plane resolution of 300 ,m, provided enough sensitivity to detect activation in brain regions known to be involved in the somatosensory pathway during stimulation of the forelimbs. These regions were identified by warping a digitized rat brain atlas to each set of images. Data analysis was constrained to four major areas of the somatosensory pathway: primary and secondary somatosensory cortices, thalamus, and cerebellum. Incidence maps were generated. Electrical stimulation at 3 Hz led to significant activation in the primary sensory cortex in all rats. Activation in the secondary sensory cortex and cerebellum was observed in 70% of the studies, while thalamic activation was observed in 40%. The amplitude of activation was measured for each area, and average response time courses were calculated. Finally, the frequency dependence of the response to forepaw stimulation was measured in each of the activated areas. Optimal activation occurred in all areas at 3 Hz. These results demonstrate that whole-brain fMRI can be performed on rodents at 11.7 T to probe a well-defined neural network. Magn Reson Med 52:89,99, 2004. Published 2004 Wiley-Liss, Inc. [source]


Distribution of large terminal inputs from the primary and secondary somatosensory cortices to the dorsal thalamus in the rodent

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 13 2010
Chia-Chi Liao
Abstract The present study was undertaken to determine the precise projection pattern from the primary (S1) and secondary (S2) somatosensory cortices to the posterior nuclear proper (POm) and ventroposterior thalamic nuclei (VP). The POm was previously shown to receive large boutons arising exclusively from layer V of the S1 barrel region. This descending input was proposed to play a key role, namely, as a driver, in shaping the receptive property of POm neurons. To determine whether other body parts and the S2 also contribute such unique inputs to the dorsal thalamus, anterograde neuroanatomical tracers were focally deposited in the S1 and S2 forepaw and whisker regions of rats and C57BL6-Tg (GFPm)/Thy1 transgenic mice. Our major findings were that, 1) irrespective of body representations, both the S1 and the S2 provided corticothalamic large terminals to the POm with comparable morphological characteristics and 2) descending large terminals were also noted in particular subzones within the VP, including boundary and caudal areas. We concluded, based on these findings, that the rodent VP has three partitions: the rostral VP innervated by small corticothalamic terminals, the caudal VP with both corticothalamic small and large terminals, and a surrounding shell region, which also contained large terminals. Furthermore, assuming that the large terminal has a driver's role, we propose that particular subzones in the VP may play a role as a multiple-order thalamic relay so that they can simultaneously coordinate with first- and higher-order relays in the thalamocortical circuitry for processing somatosensory information. J. Comp. Neurol. 518:2592,2611, 2010. © 2010 Wiley-Liss, Inc. [source]