Home About us Contact | |||
Secondary Plastids (secondary + plastid)
Selected AbstractsProtein Targeting into Secondary Plastids,THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 1 2009KATHRIN BOLTE ABSTRACT. Most of the coding capacity of primary plastids is reserved for expressing some central components of the photosynthesis machinery and the translation apparatus. Thus, for the bulk of biochemical and cell biological reactions performed within the primary plastids, many nucleus-encoded components have to be transported posttranslationally into the organelle. The same is true for plastids surrounded by more than two membranes, where additional cellular compartments have to be supplied with nucleus-encoded proteins, leading to a corresponding increase in complexity of topogenic signals, transport and sorting machineries. In this review, we summarize recent progress in elucidating protein transport across up to five plastid membranes in plastids evolved in secondary endosymbiosis. Current data indicate that the mechanisms for protein transport across multiple membranes have evolved by altering pre-existing ones to new requirements in secondary plastids. [source] A HYPOTHESIS FOR PLASTID EVOLUTION IN CHROMALVEOLATES,JOURNAL OF PHYCOLOGY, Issue 5 2008M. Virginia Sanchez-Puerta Four eukaryotic lineages, namely, haptophytes, alveolates, cryptophytes, and heterokonts, contain in most cases photosynthetic and nonphotosynthetic members,the photosynthetic ones with secondary plastids with chl c as the main photosynthetic pigment. These four photosynthetic lineages were grouped together on the basis of their pigmentation and called chromalveolates, which is usually understood to imply loss of plastids in the nonphotosynthetic members. Despite the ecological and economic importance of this group of organisms, the phylogenetic relationships among these algae are only partially understood, and the so-called chromalveolate hypothesis is very controversial. This review evaluates the evidence for and against this grouping and summarizes the present understanding of chromalveolate evolution. We also describe a testable hypothesis that is intended to accommodate current knowledge based on plastid and nuclear genomic data, discuss the implications of this model, and comment on areas that require further examination. [source] Evolution of Protein Targeting into "Complex" Plastids: The "Secretory Transport Hypothesis"PLANT BIOLOGY, Issue 4 2003O. Kilian Abstract: In algae different types of plastids are known, which vary in pigment content and ultrastructure, providing an opportunity to study their evolutionary origin. One interesting feature is the number of envelope membranes surrounding the plastids. Red algae, green algae and glaucophytes have plastids with two membranes. They are thought to originate from a primary endocytobiosis event, a process in which a prokaryotic cyanobacterium was engulfed by a eukaryotic host cell and transformed into a plastid. Several other algal groups, like euglenophytes and heterokont algae (diatoms, brown algae, etc.), have plastids with three or four surrounding membranes, respectively, probably reflecting the evolution of these organisms by so-called secondary endocytobiosis, which is the uptake of a eukaryotic alga by a eukaryotic host cell. A prerequisite for the successful establishment of primary or secondary endocytobiosis must be the development of suitable protein targeting machineries to allow the transport of nucleus-encoded plastid proteins across the various plastid envelope membranes. Here, we discuss the possible evolution of such protein transport systems. We propose that the secretory system of the respective host cell might have been the essential tool to establish protein transport into primary as well as into secondary plastids. [source] Protein Targeting into Secondary Plastids,THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 1 2009KATHRIN BOLTE ABSTRACT. Most of the coding capacity of primary plastids is reserved for expressing some central components of the photosynthesis machinery and the translation apparatus. Thus, for the bulk of biochemical and cell biological reactions performed within the primary plastids, many nucleus-encoded components have to be transported posttranslationally into the organelle. The same is true for plastids surrounded by more than two membranes, where additional cellular compartments have to be supplied with nucleus-encoded proteins, leading to a corresponding increase in complexity of topogenic signals, transport and sorting machineries. In this review, we summarize recent progress in elucidating protein transport across up to five plastid membranes in plastids evolved in secondary endosymbiosis. Current data indicate that the mechanisms for protein transport across multiple membranes have evolved by altering pre-existing ones to new requirements in secondary plastids. [source] Transit peptide diversity and divergence: A global analysis of plastid targeting signalsBIOESSAYS, Issue 10 2007Nicola J. Patron Proteins are targeted to plastids by N-terminal transit peptides, which are recognized by protein import complexes in the organelle membranes. Historically, transit peptide properties have been defined from vascular plant sequences, but recent large-scale genome sequencing from the many plastid-containing lineages across the tree of life has provided a much broader representation of targeted proteins. This includes the three lineages containing primary plastids (plants and green algae, rhodophytes and glaucophytes) and also the seven major lineages that contain secondary plastids, "secondhand" plastids derived through eukaryotic endosymbiosis. Despite this extensive spread of plastids throughout Eukaryota, an N-terminal transit peptide has been maintained as an essential plastid-targeting motif. This article provides the first global comparison of transit peptide composition and summarizes conservation of some features, the loss of an ancestral motif from the green lineages including plants, and modifications to transit peptides that have occurred in secondary and even tertiary plastids. BioEssays 29:1048,1058, 2007. © 2007 Wiley Periodicals, Inc. [source] |