Second Kind (second + kind)

Distribution by Scientific Domains


Selected Abstracts


Wavelet analysis and the governing dynamics of a large-amplitude mesoscale gravity-wave event along the East Coast of the United States

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 577 2001
Fuqing Zhang
Abstract Detailed diagnostic analyses are performed upon a mesoscale numerical simulation of a well-observed gravity-wave event that occurred on 4 January 1994 along the East Coast of the United States. The value of using wavelet analysis to investigate the evolving gravity-wave structure and of using potential vorticity (PV) inversion to study the nature of the flow imbalance in the wave generation region is demonstrated. The cross-stream Lagrangian Rossby number, the residual in the nonlinear balance equation, and the unbalanced geopotential-height field obtained from PV inversion are each evaluated for their usefulness in diagnosing the flow imbalance. All of these fields showed clear evidence of strong imbalance associated with a middle-to-upper tropospheric jet streak, and tropopause fold upstream of the large-amplitude gravity wave several hours before the wave became apparent at the surface. Analysis indicates that a train of gravity waves was continuously generated by geostrophic adjustment in the exit region of the unbalanced upper-level jet streak as it approached the inflection axis in the height field immediately downstream of the maximum imbalance associated with the tropopause fold. A split front in the middle troposphere, characterized by the advance of the dry conveyor belt above the warm front, was overtaken by one of these propagating waves. During this merger process, a resonant interaction resulted, which promoted the rapid amplification and scale contraction of both the incipient wave (nonlinear wave development) and the split front (frontogenesis). The gravity wave and front aloft became inseparable following this merger. The situation became even more complex within a few hours as the vertical motion enhanced by this front-wave interaction acted upon a saturated, potentially unstable layer to produce elevated moist convection. An analysis of the temporal changes in the vertical profile of wave energy flux suggests that moist convective downdraughts efficiently transported the wave energy from the midlevels downward beneath the warm-front surface, where the wave became ducted. However, pure ducting was not sufficient for maintaining and amplifying the waves; rather, wave-CISK (Conditional Instability of the Second Kind) was crucial. This complex sequence of nonlinear interactions produced a long-lived, large-amplitude gravity wave that created hazardous winter weather and disrupted society over a broad and highly populated area. Although gravity waves with similar appearance to this large-amplitude wave of depression occasionally have been seen in other strong cyclogenesis cases involving a jet streak ahead of the upper-level trough axis, it is unknown whether other such events share this same sequence of interactions. [source]


Dimensional analysis of the earthquake-induced pounding between adjacent structures

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 7 2009
Elias Dimitrakopoulos
Abstract In this paper the dynamic response of two and three pounding oscillators subjected to pulse-type excitations is revisited with dimensional analysis. Using Buckingham's ,-theorem the number of variables that govern the response of the system is reduced by three. When the response is presented in the dimensionless ,-terms remarkable order emerges. It is shown that regardless of the acceleration level and duration of the pulse all response spectra become self-similar and follow a single master curve. This is true despite the realization of finite duration contacts with increasing durations as the excitation level increases. All physically realizable contacts (impacts, continuous contacts, and detachments) are captured via a linear complementarity approach. The study confirms the existence of three spectral regions. The response of the most flexible among the two oscillators amplifies in the low range of the frequency spectrum (flexible structures); whereas, the response of the most stiff among the two oscillators amplifies at the upper range of the frequency spectrum (stiff structures). Most importantly, the study shows that pounding structures such as colliding buildings or interacting bridge segments may be most vulnerable for excitations with frequencies very different from their natural eigenfrequencies. Finally, by applying the concept of intermediate asymptotics, the study unveils that the dimensionless response of two pounding oscillators follows a scaling law with respect to the mass ratio, or in mathematical terms, that the response exhibits an incomplete self-similarity or self-similarity of the second kind with respect to the mass ratio. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Cover Picture: Electrophoresis 20'2009

ELECTROPHORESIS, Issue 20 2009
Article first published online: 27 OCT 200
Issue no. 20 is a regular issue with an Emphasis on "Fundamentals and Methodologies". The bulk of this issue (13 articles) is on fundamentals and methodologies covering various topics, e.g. EOF, affinity CE, structural analysis of glycosphingolipids by CE-ESI-MS, on-line concentration, monolithic columns, etc. The other 6 articles are on protein separation and proteomics. Selected articles are: Micropump based on electroosmosis of the second kind ((10.1002/elps.200900271)) A splicing model-based DNA computing approach on microfluidic chip ((10.1002/elps.200900323)) Proteomic Characterization of Plasma-derived Clotting Factor VIII , von Willebrand Factor Concentrates ((10.1002/elps.200900270)) [source]


Axisymmetric interaction of a rigid disc with a transversely isotropic half-space

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 12 2010
Amir Aabbas Katebi
Abstract A theoretical formulation is presented for the determination of the interaction of a vertically loaded disc embedded in a transversely isotropic half-space. By means of a complete representation using a displacement potential, it is shown that the governing equations of motion for this class of problems can be uncoupled into a fourth-order partial differential equation. With the aid of Hankel transforms, a relaxed treatment of the mixed-boundary value problem is formulated as dual integral equations, which, in turn, are reduced to a Fredholm equation of the second kind. In addition to furnishing a unified view of existing solutions for zero and infinite embedments, the present treatment reveals a severe boundary-layer phenomenon, which is apt to be of interest to this class of problems in general. The present solutions are analytically in exact agreement with the existing solutions for a half-space with isotropic material properties. To confirm the accuracy of the numerical evaluation of the integrals involved, numerical results are included for cases of different degrees of the material anisotropy and compared with existing solutions. Further numerical examples are also presented to elucidate the influence of the degree of the material anisotropy on the response. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Poroelastic model for pile,soil interaction in a half-space porous medium due to seismic waves

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 1 2008
Jian-Fei Lu
Abstract In this paper, frequency domain dynamic response of a pile embedded in a half-space porous medium and subjected to P, SV seismic waves is investigated. According to the fictitious pile methodology, the problem is decomposed into an extended poroelastic half-space and a fictitious pile. The extended porous half-space is described by Biot's theory, while the fictitious pile is treated as a bar and a beam and described by the conventional 1-D structure vibration theory. Using the Hankel transformation method, the fundamental solutions for a half-space porous medium subjected to a vertical or a horizontal circular patch load are established. Based on the obtained fundamental solutions and free wave fields, the second kind of Fredholm integral equations describing the vertical and the horizontal interaction between the pile and the poroelastic half-space are established. Solution of the integral equations yields the dynamic response of the pile to plane P, SV waves. Numerical results show the parameters of the porous medium, the pile and incident waves have direct influences on the dynamic response of the pile,half-space system. Significant differences between conventional single-phase elastic model and the poroelastic model for the surrounding medium of the pile are found. Copyright © 2007 John Wiley & Sons, Ltd. [source]


A study of ground-structure interaction in dynamic plate load testing

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 12 2002
Bojan B. Guzina
Abstract A mathematical treatment is presented for the forced vertical vibration of a padded annular footing on a layered viscoelastic half-space. On assuming a depth-independent stress distribution for the interfacial buffer, the set of triple integral equations stemming from the problem is reduced to a Fredholm integral equation of the second kind. The solution method, which is tailored to capture the stress concentrations beneath footing edges, is highlighted. To cater to small-scale geophysical applications, the model is used to investigate the near-field effects of ground-loading system interaction in dynamic geotechnical and pavement testing. Numerical results indicate that the uniform-pressure assumption for the contact load between the composite disc and the ground which is customary in dynamic plate load testing may lead to significant errors in the diagnosis of subsurface soil and pavement conditions. Beyond its direct application to non-intrusive site characterization, the proposed solution can be used in the seismic analysis of a variety of structures involving annular foundation geometries. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Dynamic response of soft poroelastic bed to linear water waves,a boundary layer correction approach

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 7 2001
Ping-Cheng Hsieh
Abstract According to Chen et al. (Journal of Engineering Mechanics, ASCE 1997; 123(10):1041,1049.) a boundary layer exists within the porous bed and near the homogeneous-water/porous-bed interface when oscillatory water waves propagate over a soft poroelastic bed. This boundary layer makes the evaluation of the second kind of longitudinal wave inside the soft poroelastic bed very inaccurate. In this study, the boundary layer correction approach for the poroelastic bed is applied to the boundary value problem of linear oscillatory water waves propagating over a soft poroelastic bed. After the analyses of length scale and order of magnitude of physical variables are done, a perturbation expansion for the boundary layer correction approach based on two small parameters is proposed and solved. The solutions are carried out for the first and third kind of waves throughout the entire domain. The second kind of wave which disappears outside the boundary layer is solved systematically inside the boundary layer. The results are compared with the linear wave solutions of Huang and Song (Journal of Engineering Mechanics, ASCE 1993; 119:1003,1020.) to confirm the validity. Moreover, a simplified boundary layer correction formulation which is expected to be very useful in numerical computation is also proposed. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Comparative study of the least squares approximation of the modified Bessel function

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 8 2008
Jianguo XinArticle first published online: 14 DEC 200
Abstract The least squares problem of the modified Bessel function of the second kind has been considered in this study with the Fourier series, Tchebycheff and Legendre approximation. Numerical evidence shows that the Gibbs phenomenon exists in the approximation with the truncated Fourier series, thus, giving poor convergence results compared with the other polynomial bases. For the latter two cases, the Legendre series perform better than Tchebycheff series in terms of the ,2 norm of the relative errors for each order of the polynomial approximation, and the ratio of the ,2 norm of the relative errors from the corresponding approximation seems to be a constant value of 1.3. Copyright © 2006 John Wiley & Sons, Ltd. [source]


On the investigation of shell buckling due to random geometrical imperfections implemented using Karhunen,Loève expansions

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 12 2008
K. J. Craig
Abstract For the accurate prediction of the collapse behaviour of thin cylindrical shells, it is accepted that geometrical and other imperfections in material properties and loading have to be accounted for in the simulation. There are different methods of incorporating imperfections, depending on the availability of accurate imperfection data. The current paper uses a spectral decomposition of geometrical uncertainty (Karhunen,Loève expansions). To specify the covariance of the required random field, two methods are used. First, available experimentally measured imperfection fields are used as input for a principal component analysis based on pattern recognition literature, thereby reducing the cost of the eigenanalysis. Second, the covariance function is specified analytically and the resulting Friedholm integral equation of the second kind is solved using a wavelet-Galerkin approach. Experimentally determined correlation lengths are used as input for the analytical covariance functions. The above procedure enables the generation of imperfection fields for applications where the geometry is slightly modified from the original measured geometry. For example, 100 shells are perturbed with the resulting random fields obtained from both methods, and the results in the form of temporal normal forces during buckling, as simulated using LS-DYNA®, as well as the statistics of a Monte Carlo analysis of the 100 shells in each case are presented. Although numerically determined mean values of the limit load of the current and another numerical study differ from the experimental results due to the omission of imperfections other than geometrical, the coefficients of variation are shown to be in close agreement. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Transient thermal modelling of heat recovery steam generators in combined cycle power plants

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 11 2007
Sepehr Sanaye
Abstract Heat recovery steam generator (HRSG) is a major component of a combined cycle power plant (CCPP). This equipment is particularly subject to severe thermal stress especially during cold start-up period. Hence, it is important to predict the operational parameters of HRSGs such as temperature of steam, water, hot gas and tube metal of heating elements as well as pressure change in drums during transient and steady-state operation. These parameters may be used for estimating thermal and mechanical stresses which are important in HRSG design and operation. In this paper, the results of a developed thermal model for predicting the working conditions of HRSG elements during transient and steady-state operations are reported. The model is capable of analysing arbitrary number of pressure levels and any number of elements such as superheater, evaporator, economizer, deaerator, desuperheater, reheater, as well as duct burners. To assess the correct performance of the developed model two kinds of data verification were performed. In the first kind of data verification, the program output was compared with the measured data collected from a cold start-up of an HRSG at Tehran CCPP. The variations of gas, water/steam and metal temperatures at various sections of HRSG, and pressure in drums were among the studied parameters. Mean differences of about 3.8% for temperature and about 9.2% for pressure were observed in this data comparison. In the second kind of data verification, the steady-state numerical output of the model was checked with the output of the well-known commercial software. An average difference of about 1.5% was found between the two latter groups of data. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Structural, electronic, and optical properties of 9-heterofluorenes: A quantum chemical study

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 13 2007
Run-Feng Chen
Abstract Density-functional theory studies were applied to investigate the structural, electronic, and optical properties of 9-heterofluorenes achieved by substituting the carbon at 9 position of fluorene with silicon, germanium, nitrogen, phosphor, oxygen, sulfur, selenium, or boron. These heterofluorenes and their oligomers up to pentamers are highly aromatic and electrooptically active. The alkyl and aryl substituents of the heteroatom have limited influence, but the oxidation of the atom has significant influence on their molecular structures and properties. The highest occupied molecular orbital (HOMO)-lowest occupied molecular orbital (LUMO) interaction theory was successfully applied to analyze the energy levels and the frontier wave functions of these heterofluorenes. Most heterofluorenes belong to type B of interaction with low-lying LUMO and have the second kind of wave function. Carbazole and selenafluorene have type C of interaction with high-lying HOMO and the third kind of wave function. Types C and D of heterofluorenes, such as carbazole, oxygafluorene, sulfurafluorene, and selenafluorene also have high triplet state energies. The extrapolated HOMO and LUMO for polyheterofluorenes indicate that polyselenonafluorene has the lowest LUMO; polycarbazole has the highest HOMO; polyselenafluorene has the highest bandgap (Eg); and polyborafluorene has the lowest Eg. Heterofluorenes and their oligomers and polymers are of great experimental interests, especially those having extraordinary properties revealed in this study. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007 [source]


Active force closure for multiple objects

JOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 3 2002
Kensuke Harada
This article discusses active force closure (AFC) for the manipulation of multiple objects. AFC for multiple objects is defined in such a way that the finger can generate an arbitrary acceleration onto a certain point of multiple objects. We define two kinds of AFC: in the first, an arbitrary acceleration can be generated onto each of the objects; in the second, an arbitrary acceleration can be generated onto the center of mass of multiple objects without changing the relative position of the objects. We show that the grasped object cannot always be manipulated arbitrarily even if the first kind of AFC is satisfied. We also show that the grasped objects are manipulated like a single rigid body if the second kind of AFC is satisfied. To explain these features of AFCs, numerical examples for the grasp of three objects are shown. © 2002 Wiley Periodicals, Inc. [source]


Boundary integral equations for two-dimensional low Reynolds number flow past a porous body

MATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 8 2009
Mirela Kohr
Abstract In this paper we use the method of matched asymptotic expansions in order to study the two-dimensional steady flow of a viscous incompressible fluid at low Reynolds number past a porous body of arbitrary shape. One assumes that the flow inside the porous body is described by the Brinkman model, i.e. by the continuity and Brinkman equations, and that the velocity and boundary traction fields are continuous across the interface between the fluid and porous media. By considering some indirect boundary integral representations, the inner problems are reduced to uniquely solvable systems of Fredholm integral equations of the second kind in some Sobolev or Hölder spaces, while the outer problems are solved by using the singularity method. It is shown that the force exerted by the exterior flow on the porous body admits an asymptotic expansion with respect to low Reynolds number, whose terms depend on the solutions of the abovementioned system of boundary integral equations. In addition, the case of small permeability of the porous body is also treated. Copyright © 2008 John Wiley & Sons, Ltd. [source]


A new integral equation approach to the Neumann problem in acoustic scattering

MATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 16 2001
P. A. Krutitskii
We suggest a new approach of reduction of the Neumann problem in acoustic scattering to a uniquely solvable Fredholm integral equation of the second kind with weakly singular kernel. To derive this equation we placed an additional boundary with an appropriate boundary condition inside the scatterer. The solution of the problem is obtained in the form of a single layer potential on the whole boundary. The density in the potential satisfies a uniquely solvable Fredholm integral equation of the second kind and can be computed by standard codes. Copyright © 2001 John Wiley & Sons, Ltd. [source]


A regularization procedure for the auto-correlation equation

MATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 14 2001
L. Von Wolfersdorf
The paper deals with the auto-correlation equation and its regularization by means of a Lavrent'ev regularization procedure in L2. The solution of this quadratic integral equation of the first kind and of the regularized equation of the second kind are obtained by reduction to a boundary value problem for the Fourier transform of the solution. We prove convergence of the approximate solution to the exact solution and derive a stability estimate for the error. Copyright © John Wiley & Sons, Ltd. [source]


Annihilating polynomials for quadratic forms and Stirling numbers of the second kind

MATHEMATISCHE NACHRICHTEN, Issue 11 2007
Stefan De WannemackerArticle first published online: 9 JUL 200
Abstract We present a set of generators of the full annihilator ideal for the Witt ring of an arbitrary field of characteristic unequal to two satisfying a non-vanishing condition on the powers of the fundamental ideal in the torsion part of the Witt ring. This settles a conjecture of Ongenae and Van Geel. This result could only be proved by first obtaining a new lower bound on the 2-adic valuation of Stirling numbers of the second kind. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


How can Political Liberals be Environmentalists?

POLITICAL STUDIES, Issue 4 2002
Derek Bell
It is often assumed that neutralist liberalism and environmentalism are incompatible because promoting environmentally friendly policies involves endorsing a particular conception of the good life. This paper questions that assumption by showing that one important version of neutralist liberalism, John Rawls's ,justice as fairness', can allow two kinds of justification for environmental policies. First, public reason arguments can be used to justify conceptions of sustainability and environmental justice. Second, comprehensive ideals (including non-anthropocentric ideals) can be used to justify more ambitious environmental policies when two conditions are met, namely, the issue under discussion does not concern constitutional essentials or matters of basic justice; and the policy is endorsed by a majority of citizens. Rawls's willingness to allow this second kind of justification for environmental (and other) policies is defended against two objections, which claim that Rawls's ,democratic liberalism' is incoherent. The first objection , the ,justice' objection , is that to spend public money promoting comprehensive (environmental) ideals is inconsistent with the ,difference principle'. The ,justice' objection depends on a common misunderstanding of the difference principle. The second objection , the ,neutrality' objection , claims that ,democratic liberalism' is inconsistent with Rawls's commitment to neutrality. The ,neutrality' objection is unconvincing because ,democratic liberalism' is ,fundamentally neutral' whereas the leading alternative is not. [source]


Merleau,Ponty on the Body

RATIO, Issue 4 2002
Sean Dorrance Kelly
The French philosopher Maurice Merleau,Ponty claims that there are two distinct ways in which we can understand the place of an object when we are visually apprehending it. The first involves an intentional relation to the object that is essentially cognitive or can serve as the input to cognitive processes; the second irreducibly involves a bodily set or preparation to deal with the object. Because of its essential bodily component, Merleau,Ponty calls this second kind of understanding ,motor intentional'. In this paper I consider some phenomenological, conceptual, and cognitive neuro,scientific results that help to elucidate and defend the distinction between intentional and motor intentional activity. I go on to argue that motor intentional activity has a logical structure that is essentially distinct from that of the more canonical kinds of intentional states. In particular, the characteristic logical distinction between the content and the attitude of an intentional state does not carry over to the motor intentional case. [source]


Addiction: a journal and its Invisible College,

ADDICTION, Issue 5 2006
Griffith Edwards
ABSTRACT Provenance This paper derives from a lecture given before the Society for the Study of Addiction in November 2004, on the author's retirement from the position of Editor-in-Chief of Addiction, one of the Society's journals. Aim To identify the live processes which have influenced the journal's evolution since its foundation in 1884. Conclusions Over the 120-year period a strong, continuing historical thread has been the fluctuating success of the journal's engagement with its ,Invisible College', the community which it seeks to serve. It is argued that the journal's future success will depend on its capacity to explore and nurture further this two-way relationship. Addiction is a journal with an active and clearly articulated, multiple vision of it purpose, and this vision is outlined. It dares to try to influence its future with the authority so to do rooted in its ability to reflect the aspirations and concerns of its readers. It is ,a journal of the second kind'. [source]