Secretion System (secretion + system)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Secretion System

  • iii secretion system
  • iv secretion system
  • protein secretion system
  • type iii secretion system
  • type iv secretion system


  • Selected Abstracts


    Helicobacter pylori activates protein kinase C delta to control Raf in MAP kinase signalling: Role in AGS epithelial cell scattering and elongation

    CYTOSKELETON, Issue 10 2009
    Sabine Brandt
    Abstract Helicobacter pylori is a major etiological agent in the development of chronic gastritis, duodenal ulcer and gastric carcinoma in humans. Virulent H. pylori strains harbor a type IV secretion system (T4SS) encoded by the cag pathogenicity island. This T4SS injects the CagA protein into gastric epithelial cells leading to actin-cytoskeletal rearrangements followed by cell elongation and scattering. Here we report that PMA (4,-phorbol-12-myristate-13-acetate), a well-known cell-permeable activator of protein kinase C (PKC), induces a remarkably similar cellular phenotype as compared to infection with H. pylori. PKCs comprise a large family of serine/threonine kinases which are important for multiple physiological processes of host cells. We therefore investigated the role of individual PKC members and the signalling pathways involved in phenotypical outcome. Using isoform-specific silencing RNAs and pharmacological inhibitors we found that two isoforms, PKC-, and PKC-,, were essential for both PMA- and H. pylori -induced elongation phenotype. Furthermore, we provide evidence that PKC-, activity is profoundly stimulated during the course of infection using activation-specific antibodies against PKC phosphorylated at threonine residue 505 or serine residue 660. Infection with H. pylori wild-type and mutants showed that at least two bacterial factors activate PKC-, in a time-dependent manner, one of which is CagA. Immunofluorescence microscopy studies further demonstrated that phosphorylated PKC-, is accumulated and recruited to dynamic actin-structures at the cell membrane. Finally, we show that PKC-, specifically targets Raf kinase to stimulate the Erk1/2 kinase pathway, which is also crucial for phenotypical outcome. Thus, PKC-, is another important mediator of H. pylori -induced pathogenesis. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source]


    The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel Type V secretion system

    ENVIRONMENTAL MICROBIOLOGY, Issue 6 2010
    Richard Salacha
    Summary We discovered a novel secreted protein by Pseudomonas aeruginosa, PlpD, as a member of the bacterial lipolytic enzyme family of patatin-like proteins (PLPs). PlpD is synthesized as a single molecule consisting of a secreted domain fused to a transporter domain. The N-terminus of PlpD includes a classical signal peptide followed by the four PLP conserved blocks that account for its lipase activity. The C-terminus consists of a POTRA (polypeptide transport-associated) motif preceding a putative 16-stranded ,-barrel similar to those of TpsB transporters of Type Vb secretion system. We showed that the C-terminus remains inserted into the outer membrane while the patatin moiety is secreted. The association between a TpsB component and a passenger protein is a unique hybrid organization that we propose to classify as Type Vd. More than 200 PlpD orthologues exist among pathogenic and environmental bacteria, which suggests that bacteria secrete numerous PLPs using this newly defined mechanism. [source]


    A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp.

    ENVIRONMENTAL MICROBIOLOGY, Issue 4 2007
    ACM 306
    Summary Pedomicrobium sp. ACM 3067 is a budding-hyphal bacterium belonging to the ,- Proteobacteria which is able to oxidize soluble Mn2+ to insoluble manganese oxide. A cosmid, from a whole-genome library, containing the putative genes responsible for manganese oxidation was identified and a primer-walking approach yielded 4350 bp of novel sequence. Analysis of this sequence showed the presence of a predicted three-gene operon, moxCBA. The moxA gene product showed homology to multicopper oxidases (MCOs) and contained the characteristic four copper-binding motifs (A, B, C and D) common to MCOs. An insertion mutation of moxA showed that this gene was essential for both manganese oxidation and laccase-like activity. The moxB gene product showed homology to a family of outer membrane proteins which are essential for Type I secretion in Gram-negative bacteria. moxBA has not been observed in other manganese-oxidizing bacteria but homologues were identified in the genomes of several bacteria including Sinorhizobium meliloti 1021 and Agrobacterium tumefaciens C58. These results suggest that moxBA and its homologues constitute a family of genes encoding an MCO and a predicted component of the Type I secretion system. [source]


    The alternative , factor HrpL negatively modulates the flagellar system in the phytopathogenic bacterium Erwinia amylovora under hrp -inducing conditions

    FEMS MICROBIOLOGY LETTERS, Issue 2 2006
    Sophie Cesbron
    Abstract In this work we present evidence of an opposite regulation in the phytopathogenic bacteria Erwinia amylovora between the virulence-associated Type III secretion system (TTSS) and the flagellar system. Using loss-of-function mutants we show that motility enhanced the virulence of wild-type bacteria relative to a nonmotile mutant when sprayed on apple seedlings with unwounded leaves. Then we demonstrated through analyses of motility, flagellin export and visualization of flagellar filament that HrpL, the positive key regulator of the TTSS, also down-regulates the flagellar system. Such a dual regulation mediated by an alternative , factor of the TTSS appears to be a level of regulation between virulence and motility not yet described among Proteobacteria. [source]


    Shigella spp. and enteroinvasive Escherichia coli pathogenicity factors

    FEMS MICROBIOLOGY LETTERS, Issue 1 2005
    Claude Parsot
    Abstract Bacteria of Shigella spp. (S. boydii, S. dysenteriae, S. flexneri and S. sonnei) and enteroinvasive Escherichia coli (EIEC) are responsible for shigellosis in humans, a disease characterized by the destruction of the colonic mucosa that is induced upon bacterial invasion. Shigella spp. and EIEC strains contain a virulence plasmid of ,220 kb that encodes determinants for entry into epithelial cells and dissemination from cell to cell. This review presents the current model on mechanisms of invasion of the colonic epithelium by these bacteria and focuses on their pathogenicity factors, particularly the virulence plasmid-encoded type III secretion system. [source]


    Extracellular biology of Myxococcus xanthus

    FEMS MICROBIOLOGY REVIEWS, Issue 2 2010
    Anna Konovalova
    Abstract Myxococcus xanthus has a lifecycle characterized by several social interactions. In the presence of prey, M. xanthus is a predator forming cooperatively feeding colonies, and in the absence of nutrients, M. xanthus cells interact to form multicellular, spore-filled fruiting bodies. Formation of both cellular patterns depends on extracellular functions including the extracellular matrix and intercellular signals. Interestingly, the formation of these patterns also depends on several activities that involve direct cell,cell contacts between M. xanthus cells or direct contacts between M. xanthus cells and the substratum, suggesting that M. xanthus cells have a marked ability to distinguish self from nonself. Genome-wide analyses of the M. xanthus genome reveal a large potential for protein secretion. Myxococcus xanthus harbours all protein secretion systems required for translocation of unfolded and folded proteins across the cytoplasmic membrane and an intact type II secretion system. Moreover, M. xanthus contains 60 ATP-binding cassette transporters, two degenerate type III secretion systems, both of which lack the parts in the outer membrane and the needle structure, and an intact type VI secretion system for one-step translocation of proteins across the cell envelope. Also, analyses of the M. xanthus proteome reveal a large protein secretion potential including many proteins of unknown function. [source]


    Conjugative DNA metabolism in Gram-negative bacteria

    FEMS MICROBIOLOGY REVIEWS, Issue 1 2010
    Fernando De La Cruz
    Abstract Bacterial conjugation in Gram-negative bacteria is triggered by a signal that connects the relaxosome to the coupling protein (T4CP) and transferosome, a type IV secretion system. The relaxosome, a nucleoprotein complex formed at the origin of transfer (oriT), consists of a relaxase, directed to the nic site by auxiliary DNA-binding proteins. The nic site undergoes cleavage and religation during vegetative growth, but this is converted to a cleavage and unwinding reaction when a competent mating pair has formed. Here, we review the biochemistry of relaxosomes and ponder some of the remaining questions about the nature of the signal that begins the process. [source]


    The Versatility of Helicobacter pylori CagA Effector Protein Functions: The Master Key Hypothesis

    HELICOBACTER, Issue 3 2010
    Steffen Backert
    Abstract Several bacterial pathogens inject virulence proteins into host target cells that are substrates of eukaryotic tyrosine kinases. One of the key examples is the Helicobacter pylori CagA effector protein which is translocated by a type-IV secretion system. Injected CagA becomes tyrosine-phosphorylated on EPIYA sequence motifs by Src and Abl family kinases. CagA then binds to and activates/inactivates multiple signaling proteins in a phosphorylation-dependent and phosphorylation-independent manner. A recent proteomic screen systematically identified eukaryotic binding partners of the EPIYA phosphorylation sites of CagA and similar sites in other bacterial effectors by high-resolution mass spectrometry. Individual phosphorylation sites recruited a surprisingly high number of interaction partners suggesting that each phosphorylation site can interfere with many downstream pathways. We now count 20 reported cellular binding partners of CagA, which represents the highest quantitiy among all yet known virulence-associated effector proteins in the microbial world. This complexity generates a highly remarkable and puzzling scenario. In addition, the first crystal structure of CagA provided us with new information on the function of this important virulence determinant. Here we review the recent advances in characterizing the multiple binding signaling activities of CagA. Injected CagA can act as a ,master key' that evolved the ability to highjack multiple host cell signalling cascades, which include the induction of membrane dynamics, actin-cytoskeletal rearrangements and the disruption of cell-to-cell junctions as well as proliferative, pro-inflammatory and anti-apoptotic nuclear responses. The discovery that different pathogens use this common strategy to subvert host cell functions suggests that more examples will emerge soon. [source]


    Pathogenesis of Helicobacter pylori Infection

    HELICOBACTER, Issue 2006
    Masanori Hatakeyama
    Abstract Much interest has been shown in the relationship between Helicobacter pylori infection and gastric carcinogenesis. It is becoming clearer that H. pylori strains carrying a functional cag pathogenicity island (cagPAI), which encodes the type IV secretion system (TFSS) and its effector CagA, play an important role in the development of gastric carcinoma. Furthermore, genetic polymorphism present in the cagA gene appears to influence the degree of an individual cagPAI-positive H. pylori to elicit gastric mucosal lesions, and this process is significantly affected by host genetic polymorphisms such as proinflammatory cytokine gene polymorphisms. Pathomechanism of gastric carcinogenesis associated with H. pylori includes bacteria,host interaction leading to morphologic alterations such as atrophic gastritis and gastrointestinal metaplasia mediated by COX-2 overexpression, cancer cell invasion, and neo-angiogenesis via TLR2/TLR9 system and transcription factors (e.g., NF-,B) activation. In addition, H. pylori infection triggers adhesion molecule expression and activity and produces an enhancement in oxidative stress interacting with gastric production of appetite hormone ghrelin and nonsteroidal anti-inflammatory drugs. [source]


    Pathogenesis of Helicobacter pylori Infection

    HELICOBACTER, Issue 2004
    Paul Hofman
    ABSTRACT Research in the last year has provided new insights into the function of the the cag -associated type IV secretion system and the vacuolating toxin VacA. A quite new aspect was disclosed by the finding that Helicobacter pylori in Mongolian gerbils colonizes a very distinct topology in the gastric mucous layer, obviously providing optimal conditions for long-term survival. Further research activities focused on H. pylori ammonia and metal metabolism as well as on bacterial stress defence mechanisms. Differential expression of approximately 7% of the bacterial genome was found at low pH suggesting that H. pylori has evolved a multitude of acid-adaptive mechanisms. VacA was shown to interrupt phagosome maturation in macrophage cell lines as well as to modulate and interfere with T lymphocyte immunological functions. Gastric mucosa as well as the H. pylori -infected epithelial cell line AGS strongly express IL-8 receptor A and B, which might contribute to the augmentation of the inflammatory response. Accumulating evidence implicates genetic variation in the inflammatory response to H. pylori in the etiology of the increased risk of gastric cancer after H. pylori infection. The chronic imbalance between apoptosis and cell proliferation is the first step of gastric carcinogenesis. In this regard, it was demonstrated that coexpression of two H. pylori proteins, CagA and HspB, in AGS cells, caused an increase in E2F transcription factor, cyclin D3, and phosphorylated retinoblastoma protein. Taken together, we now have a better understanding of the role of different virulence factors of H. pylori. There is still a lot to be learned, but the promising discoveries summarized here, demonstrate that the investigation of the bacterial survival strategies will give novel insights into pathogenesis and disease development. [source]


    Genetic analysis of two phosphodiesterases reveals cyclic diguanylate regulation of virulence factors in Dickeya dadantii

    MOLECULAR MICROBIOLOGY, Issue 3 2010
    Xuan Yi
    Summary Cyclic diguanylate (c-di-GMP) is a second messenger implicated in the regulation of various cellular properties in several bacterial species. However, its function in phytopathogenic bacteria is not yet understood. In this study we investigated a panel of GGDEF/EAL domain proteins which have the potential to regulate c-di-GMP levels in the phytopathogen Dickeya dadantii 3937. Two proteins, EcpB (contains GGDEF and EAL domains) and EcpC (contains an EAL domain) were shown to regulate multiple cellular behaviours and virulence gene expression. Deletion of ecpB and/or ecpC enhanced biofilm formation but repressed swimming/swarming motility. In addition, the ecpB and ecpC mutants displayed a significant reduction in pectate lyase production, a virulence factor of this bacterium. Gene expression analysis showed that deletion of ecpB and ecpC significantly reduced expression of the type III secretion system (T3SS) and its virulence effector proteins. Expression of the T3SS genes is regulated by HrpL and possibly RpoN, two alternative sigma factors. In vitro biochemical assays showed that EcpC has phosphodiesterase activity to hydrolyse c-di-GMP into linear pGpG. Most of the enterobacterial pathogens encode at least one T3SS, a major virulence factor which functions to subvert host defences. The current study broadens our understanding of the interplay between c-di-GMP, RpoN and T3SS and the potential role of c-di-GMP in T3SS regulation among a wide range of bacterial pathogens. [source]


    C-ring requirement in flagellar type III secretion is bypassed by FlhDC upregulation

    MOLECULAR MICROBIOLOGY, Issue 2 2010
    Marc Erhardt
    Summary The cytoplasmic C-ring of the flagellum consists of FliG, FliM and FliN and acts as an affinity cup to localize secretion substrates for protein translocation via the flagellar-specific type III secretion system. Random T-POP transposon mutagenesis was employed to screen for insertion mutants that allowed flagellar type III secretion in the absence of the C-ring using the flagellar type III secretion system-specific hook,,-lactamase reporter (Lee and Hughes, 2006). Any condition resulting in at least a twofold increase in flhDC expression was sufficient to overcome the requirement for the C-ring and the ATPase complex FliHIJ in flagellar type III secretion. Insertions in known and unknown flagellar regulatory loci were isolated as well as chromosomal duplications of the flhDC region. The twofold increased flhDC mRNA level coincided in a twofold increase in the number of hook-basal bodies per cell as analysed by fluorescent microscopy. These results indicate that the C-ring functions as a nonessential affinity cup-like structure during flagellar type III secretion to enhance the specificity and efficiency of the secretion process. [source]


    Type IV pili-mediated secretion modulates Francisella virulence

    MOLECULAR MICROBIOLOGY, Issue 1 2006
    Anthony J. Hager
    Summary Francisella tularensis are the causative agent of the zoonotic disease, tularaemia. Among four F. tularensis subspecies, ssp. novicida (F. novicida) is pathogenic only for immunocompromised individuals, while all four subspecies are pathogenic for mice. This study utilized proteomic and bioinformatic approaches to identify seven F. novicida secreted proteins and the corresponding Type IV pilus (T4P) secretion system. The secreted proteins were predicted to encode two chitinases, a chitin binding protein, a protease (PepO), and a ,-glucosidase (BglX). The transcription of F. novicida pepO and bglX was regulated by the virulence regulator MglA. Intradermal infection of mice with F. novicida mutants defective in T4P secretion system or PepO resulted in enhanced F. novicida spread to systemic sites. Infection with F. novicida pepO mutants also resulted in increased neutrophil infiltration into the mouse airways. PepO is a zinc protease that is homologous to mammalian endothelin-converting enzyme ECE-1. Therefore, secretion of PepO likely results in increased production of endothelin and increased vasoconstriction at the infection site in skin that limits the F. novicida spread. Francisella human pathogenic strains contain a mutation in pepO predicted to abolish its secretion. Loss of PepO function may have contributed to evolution of highly virulent Francisellae. [source]


    Flk prevents premature secretion of the anti-, factor FlgM into the periplasm

    MOLECULAR MICROBIOLOGY, Issue 3 2006
    Phillip Aldridge
    Summary The flk locus of Salmonella typhimurium was identified as a regulator of flagellar gene expression in strains defective in P- and l -ring formation. Flk acts as a regulator of flagellar gene expression by modulating the protein levels of the anti-,28 factor FlgM. Evidence is presented which suggests that Flk is a cytoplasmic-facing protein anchored to the inner membrane by a single, C-terminal transmembrane-spanning domain (TMS). The specific amino acid sequence of the TMS is not essential for Flk activity, but membrane anchoring is essential. Membrane fractionation and visualization of protein fusions of green fluorescent protein derivatives to Flk suggested that the Flk protein is present in the membrane as punctate spots in number that are much greater than the number of flagellar basal structures. The turnover of the anti-,28 factor FlgM was increased in flk mutant strains. Using FlgM,,-lactamase fusions we show the increased turnover of FlgM in flk null mutations is due to FlgM secretion into the periplasm where it is degraded. Our data suggest that Flk inhibits FlgM secretion by acting as a braking system for the flagellar-associated type III secretion system. A model is presented to explain a role for Flk in flagellar assembly and gene regulatory processes. [source]


    Release of the type I secreted ,-haemolysin via outer membrane vesicles from Escherichia coli

    MOLECULAR MICROBIOLOGY, Issue 1 2006
    Carlos Balsalobre
    Summary The ,-haemolysin is an important virulence factor commonly expressed by extraintestinal pathogenic Escherichia coli. The secretion of the ,-haemolysin is mediated by the type I secretion system and the toxin reaches the extracellular space without the formation of periplasmic intermediates presumably in a soluble form. Surprisingly, we found that a fraction of this type I secreted protein is located within outer membrane vesicles (OMVs) that are released by the bacteria. The ,-haemolysin appeared very tightly associated with the OMVs as judged by dissociation assays and proteinase susceptibility tests. The ,-haemolysin in OMVs was cytotoxically active and caused lysis of red blood cells. The OMVs containing the ,-haemolysin were distinct from the OMVs not containing ,-haemolysin, showing a lower density. Furthermore, they differed in protein composition and one component of the type I secretion system, the TolC protein, was found in the lower density vesicles. Studies of natural isolates of E. coli demonstrated that the localization of ,-haemolysin in OMVs is a common feature among haemolytic strains. We propose an alternative pathway for the transport of the type I secreted ,-haemolysin from the bacteria to the host cells during bacterial infections. [source]


    NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii

    MOLECULAR MICROBIOLOGY, Issue 5 2005
    Peter Skorpil
    Summary Rhizobium sp. NGR234 nodulates many plants, some of which react to proteins secreted via a type three secretion system (T3SS) in a positive- (Flemingia congesta, Tephrosia vogelii) or negative- (Crotalaria juncea, Pachyrhizus tuberosus) manner. T3SSs are devices that Gram-negative bacteria use to inject effector proteins into the cytoplasm of eukaryotic cells. The only two rhizobial T3SS effector proteins characterized to date are NopL and NopP of NGR234. NopL can be phosphorylated by plant kinases and we show this to be true for NopP as well. Mutation of nopP leads to a dramatic reduction in nodule numbers on F. congesta and T. vogelii. Concomitant mutation of nopL and nopP further diminishes nodulation capacity to levels that, on T. vogelii, are lower than those produced by the T3SS null mutant NGR,rhcN. We also show that the T3SS of NGR234 secretes at least one additional effector, which remains to be identified. In other words, NGR234 secretes a cocktail of effectors, some of which have positive effects on nodulation of certain plants while others are perceived negatively and block nodulation. NopL and NopP are two components of this mix that extend the ability of NGR234 to nodulate certain legumes. [source]


    Identification and characterization of NleA, a non-LEE-encoded type III translocated virulence factor of enterohaemorrhagic Escherichia coli O157:H7

    MOLECULAR MICROBIOLOGY, Issue 5 2004
    Samantha Gruenheid
    Summary Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 uses a specialized protein translocation apparatus, the type III secretion system (TTSS), to deliver bacterial effector proteins into host cells. These effectors interfere with host cytoskeletal pathways and signalling cascades to facilitate bacterial survival and replication and promote disease. The genes encoding the TTSS and all known type III secreted effectors in EHEC are localized in a single pathogenicity island on the bacterial chromosome known as the locus for enterocyte effacement (LEE). In this study, we performed a proteomic analysis of proteins secreted by the LEE-encoded TTSS of EHEC. In addition to known LEE-encoded type III secreted proteins, such as EspA, EspB and Tir, a novel protein, NleA (non- LEE-encoded effector A), was identified. NleA is encoded in a prophage-associated pathogenicity island within the EHEC genome, distinct from the LEE. The LEE-encoded TTSS directs translocation of NleA into host cells, where it localizes to the Golgi apparatus. In a panel of strains examined by Southern blot and database analyses, nleA was found to be present in all other LEE-containing pathogens examined, including enteropathogenic E. coli and Citrobacter rodentium, and was absent from non-pathogenic strains of E. coli and non-LEE-containing pathogens. NleA was determined to play a key role in virulence of C. rodentium in a mouse infection model. [source]


    Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides

    MOLECULAR MICROBIOLOGY, Issue 1 2003
    Martin W. Bader
    Summary Cationic antimicrobial peptides (CAMP) represent a conserved and highly effective component of innate immunity. During infection, the Gram-negative pathogen Salmonella typhimurium induces different mechanisms of CAMP resistance that promote pathogenesis in animals. This study shows that exposure of S. typhimurium to sublethal concentrations of CAMP activates the PhoP/PhoQ and RpoS virulence regulons, while repressing the transcription of genes required for flagella synthesis and the invasion-associated type III secretion system. We further demonstrate that growth of S. typhimurium in low doses of the ,-helical peptide C18G induces resistance to CAMP of different structural classes. Inducible resistance depends on the presence of PhoP, indicating that the PhoP/PhoQ system can sense sublethal concentrations of cationic antimicrobial peptides. Growth of S. typhimurium in the presence of CAMP also leads to RpoS-dependent protection against hydrogen peroxide. Because bacterial resistance to oxidative stress and CAMP are induced during infection of animals, CAMP may be an important signal recognized by bacteria on colonization of animal tissues. [source]


    The Salmonella SpiC protein targets the mammalian Hook3 protein function to alter cellular trafficking

    MOLECULAR MICROBIOLOGY, Issue 6 2003
    Yoram Shotland
    Summary The Salmonella SpiC protein is secreted into the cytosol of macrophages via a unique type III secretion system that functions intracellularly to translocate proteins across the phagosomal membrane. The SpiC protein is required for survival within macrophages and inhibition of phagosome-lysosome fusion in vivo, and it is sufficient to inhibit endosome-endosome fusion in vitro. Here, we establish that SpiC targets the function of Hook3, a mammalian protein implicated in cellular trafficking. Purified GST-SpiC pulled down Hook3 from murine macrophages, and anti-Hook3 antibodies precipitated SpiC from the cytosol of Salmonella -infected macrophages. Expression of the spiC gene disrupted Golgi morphology in Vero cells and altered the distribution of lysosomes in macrophages, mimicking the phenotype of cells expressing a hook3 dominant-negative mutant. By inactivating Hook3 function, the SpiC protein may alter the lysosome network and prevent phagosome-lysosome fusion. [source]


    VirE2, a Type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens

    MOLECULAR MICROBIOLOGY, Issue 6 2003
    Krishnamohan Atmakuri
    Summary Agrobacterium tumefaciens transfers oncogenic DNA and effector proteins to plant cells during the course of infection. Substrate translocation across the bacterial cell envelope is mediated by a type IV secretion (TFS) system composed of the VirB proteins, as well as VirD4, a member of a large family of inner membrane proteins implicated in the coupling of DNA transfer intermediates to the secretion machine. In this study, we demonstrate with novel cytological screens , a two-hybrid (C2H) assay and bimolecular fluorescence complementation (BiFC) , and by immunoprecipitation of chemically cross-linked protein complexes that the VirE2 effector protein interacts directly with the VirD4 coupling protein at cell poles of A. tumefaciens. Analyses of truncation derivatives showed that VirE2 interacts via its C terminus with VirD4, and, further, an NH2 -terminal membrane-spanning domain of VirD4 is dispensable for complex formation. VirE2 interacts with VirD4 independently of the virB -encoded transfer machine and T pilus, the putative periplasmic chaperones AcvB and VirJ, and the T-DNA transfer intermediate. Finally, VirE2 is recruited to polar-localized VirD4 as a complex with its stabilizing secretion chaperone VirE1, yet the effector,coupling protein interaction is not dependent on chaperone binding. Together, our findings establish for the first time that a protein substrate of a type IV secretion system is recruited to a member of the coupling protein superfamily. [source]


    Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell

    MOLECULAR MICROBIOLOGY, Issue 1 2002
    Boris Szurek
    Summary Many plant pathogenic bacteria utilize a conserved type III secretion system (TTSS) to deliver effector proteins into the host tissue. Indirect evidence has suggested that at least some effector proteins are translocated from the bacterial cytoplasm into the plant cell. Using an immunocytochemical approach, we demonstrate that the type III effector AvrBs3 from Xanthomonas campestris pv. vesicatoria localizes to nuclei of infected pepper leaves. Importantly, AvrBs3 translocation was observed in situ in native tissues of susceptible and resistant plants. AvrBs3 was detected in the nucleus as soon as 4 h post infection, which was dependent on a functional TTSS and the putative translocator HrpF. N-terminal AvrBs3 deletion derivatives are no longer secreted by the TTSS in vitro and could not be detected inside the host cells, suggesting that the N-terminus of AvrBs3 is important for secretion. Deletion of the nuclear localization signals in the AvrBs3 C-terminus, which are required for the AvrBs3-mediated induction of the hypersensitive reaction in resistant pepper plants, abolished AvrBs3 localization to the nucleus. This is the first report on direct evidence for translocation of a native type III effector protein from a plant pathogenic bacterium into the host cell. [source]


    Identification of novel hrp -regulated genes through functional genomic analysis of the Pseudomonas syringae pv. tomato DC3000 genome

    MOLECULAR MICROBIOLOGY, Issue 5 2002
    Julie Zwiesler-Vollick
    Summary Pseudomonas syringae pv. tomato ( Pst ) strain DC3000 infects the model plants Arabidopsis thaliana and tomato, causing disease symptoms characterized by necrotic lesions surrounded by chlorosis. One mechanism used by Pst DC3000 to infect host plants is the type III protein secretion system, which is thought to deliver multiple effector proteins to the plant cell. The exact number of type III effectors in Pst DC3000 or any other plant pathogenic bacterium is not known. All known type III effector genes of P. syringae are regulated by HrpS, an NtrC family protein, and the HrpL alternative sigma factor, which presumably binds to a conserved cis element (called the ,hrp box') in the promoters of type III secretion-associated genes. In this study, we designed a search motif based on the promoter sequences conserved in 12 published hrp operons and putative effector genes in Pst DC3000. Seventy-three predicted genes were retrieved from the January 2001 release of the Pst DC3000 genome sequence, which had 95% genome coverage. The expression of the 73 genes was analysed by microarray and Northern blotting, revealing 24 genes/operons (including eight novel genes), the expression of which was consistently higher in hrp -inducing minimal medium than in nutrient-rich Luria,Bertani broth. Expression of all eight genes was dependent on the hrpS gene. Most were also dependent on the hrpL gene, but at least one was dependent on the hrpS gene, but not on the hrpL gene. An AvrRpt2-based type III translocation assay provides evidence that some of the hrpS -regulated novel genes encode putative effector proteins. [source]


    IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation

    MOLECULAR MICROBIOLOGY, Issue 1 2000
    Kirsten Niebuhr
    Invasion of epithelial cells by Shigella flexneri involves entry and intercellular dissemination. Entry of bacteria into non-phagocytic cells requires the IpaA,D proteins that are secreted by the Mxi,Spa type III secretion machinery. Type III secretion systems are found in several Gram-negative pathogens and serve to inject bacterial effector proteins directly into the cytoplasm of host cells. In this study, we have analysed the IpgD protein of S. flexneri, the gene of which is located on the virulence plasmid at the 5, end of the mxi,spa locus. We have shown that IpgD (i) is stored in the bacterial cytoplasm in association with a specific chaperone, IpgE; (ii) is secreted by the Mxi,Spa type III secretion system in amounts similar to those of the IpaA,D proteins; (iii) is associated with IpaA in the extracellular medium; and (iv) is involved in the modulation of the host cell response after contact of the bacterium with epithelial cells. This suggests that IpgD is an effector that might be injected into host cells to manipulate cellular processes during infection. [source]


    DspA/E, a type III effector of Erwinia amylovora, is required for early rapid growth in Nicotiana benthamiana and causes NbSGT1-dependent cell death

    MOLECULAR PLANT PATHOLOGY, Issue 3 2007
    CHANG-SIK OH
    SUMMARY DspA/E is a pathogenicity factor of Erwinia amylovora that is translocated into the plant cell cytoplasm through an Hrp type III secretion system. Transient expression of dspA/E in Nicotiana benthamiana or yeast induced cell death, as it does in N. tabacum and apple as described previously. DspA/E-induced cell death in N. benthamiana was not inhibited by coexpression of AvrPtoB of Pseudomonas syringae pv. tomato, which inhibits programmed cell death (PCD) induced by several other elicitors in plants. Silencing of NbSGT1, the expression of which is required for PCD mediated by several resistance proteins of plants, prevented DspA/E-induced cell death in N. benthamiana. However, silencing of NbRAR1, or two MAP kinase kinase genes, which are required for PCD associated with many resistance genes in plants, did not prevent cell death induced by DspA/E. Silencing of NbSGT1 also compromised non-host resistance against E. amylovora. E. amylovora grew rapidly within the first 24 h after infiltration in N. benthamiana, and DspA/E was required for this early rapid growth. However, bacterial cell numbers decreased after 24 h in TRV-vector-transformed plants, whereas a dspA/E mutant strain grew to high populations in NbSGT1 -silenced plants. Our results indicate that DspA/E enhances virulence of E. amylovora in N. benthamiana, but the bacteria are then recognized by the plant, resulting in PCD and death of bacterial cells or restriction of bacterial cell growth. [source]


    Erwinia amylovora modifies phenolic profiles of susceptible and resistant apple through its type III secretion system

    PHYSIOLOGIA PLANTARUM, Issue 3 2008
    Isabelle Pontais
    Fire blight is a disease affecting Maloideae caused by the necrogenic bacterium Erwinia amylovora, which requires the type III protein secretion system (TTSS) for pathogenicity. Profiles of methanol-extractable leaf phenolics of two apple (Malus × domestica) genotypes with contrasting susceptibility to this disease were analyzed by HPLC after infection. Some qualitative differences were recorded between the constitutive compositions of the two genotypes but in both of them dihydrochalcones accounted for more than 90% of total phenolics. Principal component analysis separated leaves inoculated with a virulent wild-type strain from those inoculated with a non-pathogenic TTSS-defective mutant or with water. The changes in levels of the various groups of phenolics in response to the virulent bacterium were similar between the two genotypes, with a significant decrease of dihydrochalcones and a significant increase of hydroxycinnamate derivatives. Differences between genotypes were, however, recorded in amplitude and kinetic of variation in these groups. Occurrence of oxidation and polymerization reactions is proposed, based on the browning process of infected tissues, but whether some by-products act in defense as toxic compounds remain to be tested. Among direct antibacterial constitutive compounds present in apple leaves, the dihydrochalcone phloretin only was found at levels close to lethal concentrations in both genotypes. However, E. amylovora exhibited the ability to stabilize this compound at sublethal levels even in the resistant apple, rejecting the hypothesis of its involvement in the resistance of this genotype. [source]


    Folding kinetics and thermodynamics of Pseudomonas syringae effector protein AvrPto provide insight into translocation via the type III secretion system

    PROTEIN SCIENCE, Issue 7 2008
    Jennifer E. Dawson
    Abstract In order to infect their hosts, many Gram-negative bacteria translocate agents of infection, called effector proteins, through the type III secretion system (TTSS) into the host cytoplasm. This process is thought to require at least partial unfolding of these agents, raising the question of how an effector protein might unfold to enable its translocation and then refold once it reaches the host cytoplasm. AvrPto is a well-studied effector protein of Pseudomonas syringae pv tomato. The presence of a readily observed unfolded population of AvrPto in aqueous solution and the lack of a known secretion chaperone make it ideal for studying the kinetic and thermodynamic characteristics that facilitate translocation. Application of Nzz exchange spectroscopy revealed a global, two-state folding equilibrium with 16% unfolded population, a folding rate of 1.8 s,1, and an unfolding rate of 0.33 s,1 at pH 6.1. TrAvrPto stability increases with increasing pH, with only 2% unfolded population observed at pH 7.0. The R1 relaxation of TrAvrPto, which is sensitive to both the global anisotropy of folded TrAvrPto and slow exchange between folded and unfolded conformations, provided independent verification of the global kinetic rate constants. Given the acidic apoplast in which the pathogen resides and the more basic host cytoplasm, these results offer an intriguing mechanism by which the pH dependence of stability and slow folding kinetics of AvrPto would allow efficient translocation of the unfolded form through the TTSS and refolding into its functional folded form once inside the host. [source]


    Characterization of the binding surface of the translocated intimin receptor, an essential protein for EPEC and EHEC cell adhesion

    PROTEIN SCIENCE, Issue 12 2007
    Nathan T. Ross
    Abstract The translocated intimin receptor (TIR) of enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) is required for EPEC and EHEC infections, which cause widespread illness across the globe. TIR is translocated via a type-III secretion system into the intestinal epithelial cell membrane, where it serves as an anchor for E. coli attachment via its binding partner intimin. While many aspects of EPEC and EHEC infection are now well understood, the importance of the intermolecular contacts made between intimin and TIR have not been thoroughly investigated. Herein we report site-directed mutagenesis studies on the intimin-binding domain of EPEC TIR, and how these mutations affect TIR-intimin association, as analyzed by isothermal titration calorimetry and circular dichroism. These results show how two factors govern TIR's binding to intimin: A three-residue TIR hot spot is identified that largely mediates the interaction, and mutants that alter the ,-hairpin structure of TIR severely diminish binding affinity. In addition, peptides incorporating key TIR residues identified by mutagenesis are incapable of binding intimin. These results indicate that hot spot residues and structural orientation/preorganization are required for EPEC, and likely EHEC, TIR-intimin binding. [source]


    The FliK protein and flagellar hook-length control

    PROTEIN SCIENCE, Issue 5 2007
    Richard C. Waters
    Abstract The bacterial flagellum is a highly complex prokaryotic organelle. It is the motor that drives bacterial motility, and despite the large amount of energy required to make and operate flagella, motile organisms have a strong adaptive advantage. Flagellar biogenesis is both complex and highly coordinated and it typically involves at least three two-component systems. Part of the flagellum is a type III secretion system, and it is via this structure that flagellar components are exported. The assembly of a flagellum occurs in a number of stages, and the "checkpoint control" protein FliK functions in this process by detecting when the flagellar hook substructure has reached its optimal length. FliK then terminates hook export and assembly and transmits a signal to begin filament export, the final stage in flagellar biosynthesis. As yet the exact mechanism of how FliK achieves this is not known. Here we review what is known of the FliK protein and discuss the evidence for and against the various hypotheses that have been proposed in recent years to explain how FliK controls hook length, FliK as a molecular ruler, the measuring cup theory, the role of the FliK N terminus, the infrequent molecular ruler theory, and the molecular clock theory. [source]


    Detailed analysis of the DNA recognition motifs of the Xanthomonas type III effectors AvrBs3 and AvrBs3,rep16

    THE PLANT JOURNAL, Issue 6 2009
    Sabine Kay
    Summary The Gram-negative phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) employs a type III secretion system to translocate effector proteins into plant cells where they modulate host signaling pathways to the pathogen's benefit. The effector protein AvrBs3 acts as a eukaryotic transcription factor and induces the expression of plant genes termed UPA (up-regulated by AvrBs3). Here, we describe 11 new UPA genes from bell pepper that are induced by AvrBs3 early after infection with Xcv. Sequence comparisons revealed the presence of a conserved AvrBs3-responsive element, the UPA box, in all UPA gene promoters analyzed. Analyses of UPA box mutant derivatives confirmed its importance for gene induction by AvrBs3. We show that DNA binding and gene activation were strictly correlated. DNase I footprint studies demonstrated that the UPA box corresponds to the center of the AvrBs3-protected DNA region. Type III delivery of AvrBs3 and mutant derivatives showed that some UPA genes are induced by the AvrBs3 deletion derivative AvrBs3,rep16, which lacks four repeats. We show that AvrBs3,rep16 recognizes a mutated UPA box with two nucleotide exchanges in positions that are not essential for binding and activation by AvrBs3. [source]


    The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana

    THE PLANT JOURNAL, Issue 6 2005
    Matthew Metz
    Summary Nicotiana benthamiana leaves display a visible plant cell death response when infiltrated with a high titer inoculum of the non-host pathogen, Xanthomonas campestris pv. vesicatoria (Xcv). This visual phenotype was used to identify overlapping cosmid clones from a genomic cosmid library constructed from the Xcv strain, GM98-38. Individual cosmid clones from the Xcv library were conjugated into X. campestris pv. campestris (Xcc) and exconjugants were scored for an altered visual high titer inoculation response in N. benthamiana. The molecular characterization of the cosmid clones revealed that they contained a novel gene, xopX, that encodes a 74-kDa type III secretion system (TTSS) effector protein. Agrobacterium -mediated transient expression of XopX in N. benthamiana did not elicit the plant cell death response although detectable XopX protein was produced. Interestingly, the plant cell death response occurred when the xopX Agrobacterium -mediated transient expression construct was co-inoculated with strains of either Xcv,xopX or Xcc, both lacking xopX. The co-inoculation complementation of the plant cell death response also depends on whether the Xanthomonas strains contain an active TTSS. Transgenic 35S- xopX -expressing N. benthamiana plants also have the visible plant cell death response when inoculated with the non- xopX -expressing strains Xcv,xopX and Xcc. Unexpectedly, transgenic 35S- xopX N. benthamiana plants displayed enhanced susceptibility to bacterial growth of Xcc as well as other non- xopX -expressing Xanthomonas and Pseudomonas strains. This result is also consistent with the increase in bacterial growth on wild type N. benthamiana plants observed for Xcc when XopX is expressed in trans. Furthermore, XopX contributes to the virulence of Xcv on host pepper (Capsicum annuum) and tomato (Lycopersicum esculentum) plants. We propose that the XopX bacterial effector protein targets basic innate immunity in plants, resulting in enhanced plant disease susceptibility. [source]