Seasonal Snow Cover (seasonal + snow_cover)

Distribution by Scientific Domains


Selected Abstracts


Temporal and spatial variations in periglacial soil movements on alpine crest slopes

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 1 2005
Norikazu Matsuoka
Abstract This paper describes up to ten years of continuous monitoring of frost heave, creep and associated parameters on high mountain crest slopes in the Japanese and Swiss Alps, aiming to evaluate spatial and interannual variations in the rates and controls of soil movement. Shallow frost creep re,ecting diurnal frost heave activity dominates the crest slopes that lack a vegetation mat and have a thin debris mantle with good drainage. Seasonal frost heave activity can induce slightly deeper movement where ,ne soil exists below the depth reached by diurnal freeze,thaw penetration, although the shallow bedrock impedes movements below 20 cm depth. As a result, downslope velocity pro,les display strong concavity with surface velocities of 2,50 cm a,1. The frost creep rates vary spatially, depending on the soil texture, slope gradient, frequency of temperature cycling across 0 °C and moisture availability during freeze,thaw periods. Soil movements recur in every freeze,thaw period, although with some interannual variations affected by the length of seasonal snow cover and the occurrence of precipitation during freeze,thaw periods. The Swiss Alps encounter more signi,cant interannual variations than the Japanese Alps, re,ecting the large variability of the annual snow regime. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Boundary and border considerations in hydrology

HYDROLOGICAL PROCESSES, Issue 7 2004
Ming-ko Woo
Abstract This paper examines several issues related to hydrological boundaries and their border zones. In a two-dimensional space, a boundary is a line that separates two domains possessing different hydrological properties or dominated by different hydrological processes, and a border is an area that experiences an edge effect owing to transitions or mixing of processes. Hydrological boundaries may be static, such as drainage divides, or dynamic, such as the edges of a seasonal snow cover. They may be open or closed to the transfer of matter and energy, although most boundaries tend to be perforated, permitting different rates of movement across different segments. Borders may be narrow or the edge effect can affect large areas, as happens to the sensible heat flux over a highly fragmented melting snowfield. The introduction of artificial boundaries, notably the grid patterns of remote sensing pixels, digital elevation models and land surface schemes, gives rise to problems of mismatch with the natural hydrological boundaries. Incorrect demarcation, omission and generalization of boundaries can produce errors that are hard to rectify. Serious biases are involved when point observations are used to calibrate parameters or to validate model outputs integrated over a bounded area. Examples are drawn mainly from cold climate hydrology to illustrate the boundary issues but the questions transcend disciplinary areas. The intent of this presentation is to stimulate discussions that could be a prelude to finding solutions to many boundary problems which have thus far eluded hydrological investigations. Copyright © 2004 John Wiley & Sons, Ltd. [source]


European snow cover extent variability and associations with atmospheric forcings

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 10 2010
Gina R. Henderson
Abstract Snow cover in Europe represents an important component of the region's climatic system. Variability in snow cover extent can have major implications on factors such as low-level atmospheric temperatures, soil temperatures, soil moisture, stream discharge, and energy allocation involved in the warming and melting of the snowpack. The majority of studies investigating Northern Hemisphere snow cover identify European snow cover extent as a portion of the Eurasian record, possibly masking complexities of this subset. This study explores the variability of European snow cover extent from 1967,2007, with the region in question including the area of Europe extending eastward to the Ural Mountains (60°E). Using the 89 × 89 gridded National Oceanic and Atmospheric Administration (NOAA) Northern Hemisphere weekly satellite snow cover product, area estimates of seasonal snow cover were calculated, and their relationship to gridded temperature, precipitation, and sea-level pressure data analysed. The spatial variability of snow cover extent was also explored using geographical information systems (GIS). The combined results from both surface temperature and precipitation analyses point towards snow cover extent in Europe being primarily temperature dependent. Atmospheric variables associated with extremes in snow cover extent were investigated. Large (small) European snow extent is associated with negative (positive) 850 hPa zonal wind anomalies, negative (positive) European 1000,500 hPa thickness anomalies, and generally positive (negative) Northern European precipitation anomalies. Sea-level pressure and 500 hPa results indicate strong associations between large (small) snow cover seasons and the negative (positive) phase of the North Atlantic Oscillation. Copyright © 2009 Royal Meteorological Society [source]


European Alpine moisture variability for 1800,2003

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 4 2007
G. van der Schrier
Abstract Moisture availability for the European Greater Alpine region (GAR) (43°N,49°N and 4°E,19°E) for the period 1800,2003 is analyzed on the basis of maps of monthly self-calibrating Palmer Drought Severity Index (scPDSI) with a 10, × 10, spatial resolution. To represent the impact of seasonal snow cover on the water budget, a simple snow-accumulation and snowmelt model is added to the water balance calculations on which the (self-calibrating) Palmer Drought Severity Index is based. Over the region as a whole, the late 1850s into the 1870s and the 1940s to the early 1950s stand out as persistent and exceptionally dry periods, whereas the first two decades of the nineteenth century and the 1910s were exceptionally wet periods. Dividing the Greater Alpine Region into four subregions, with the subregions based on coherence of precipitation variability, we find a large degree of heterogeneity in the behavior of the drought index over the subregions. The driest summers on record, in terms of the amplitude of the index averaged over the Alpine region, are 1865 and 2003. In these years, 75.6% and 85.1% of the region was suffering from a moderate drought (or worse). The areas northwest of the high mountains were affected most severely in the 1865 drought, whereas the 2003 drought impacted all subregions more equally. By substituting climatological monthly mean temperatures, from the period 1961,1990, for the actual monthly means in the parameterization for potential evaporation, an estimate is made of the direct effect of temperature on drought. It is observed that a major cause for the vast areal extent of the area affected by the summer drought in the last decade is the high temperatures. Temperatures in the 12 months preceding and including the summer of 2003 explain an increase in the area percentage with moderate (or worse) drought of 31.2%. Copyright © 2006 Royal Meteorological Society [source]