Sessile Organisms (sessile + organism)

Distribution by Scientific Domains


Selected Abstracts


Influence of different substrates on the evolution of morphology and life-history traits of azooxanthellate solitary corals (Scleractinia: Flabellidae)

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2010
YUKI TOKUDA
Sessile organisms are influenced considerably by their substrate conditions, and their adaptive strategies are key to understanding their morphologic evolution and traits of life history. The family Flabellidae (Cnidaria: Scleractinia) is composed of the representative azooxanthellate solitary corals that live on both soft and hard substrates using various adaptive strategies. We reconstructed the phylogenetic tree and ancestral character states of this family from the mitochondrial 16S and nuclear 28S ribosomal DNA sequences of ten flabellids aiming to infer the evolution of their adaptive strategies. The Javania lineage branched off first and adapted to hard substrates by using a tectura-reinforced base. The extant free-living flabellids, including Flabellum and Truncatoflabellum, invaded soft substrates and acquired the flabellate corallum morphology of their common ancestor, followed by a remarkable radiation with the exploitation of adaptive strategies, such as external soft tissue [e.g. Flabellum (Ulocyathus)], thecal edge spine, and transverse division (e.g. Placotrochus and Truncatoflabellum). Subsequently, the free-living ancestors of two genera (Rhizotrochus and Monomyces) invaded hard substrates independently by exploiting distinct attachment apparatuses such as tube-like and massive rootlets, respectively. In conclusion, flabellids developed various morphology and life-history traits according to the differences in substrate conditions during the course of their evolution. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101, 184,192. [source]


Contaminated suspended sediments toxic to an Antarctic filter feeder: Aqueous- and particulate-phase effects

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2009
Nicole A. Hill
Abstract Disturbances such as dredging, storms, and bioturbation result in the resuspension of sediments. This may affect sessile organisms that live on hard substrates directly above the sediment. Localized sediment contamination exists around many Antarctic research stations, often resulting in elevated contamination loads in marine sediments. To our knowledge, the potential impact of resuspended contaminated sediments on sessile fauna has not been considered, so in the present study, we assessed the sensitivity of Antarctic spirorbid polychaetes to aqueous metals and to metal-contaminated sediments that had been experimentally resuspended. Worms were first exposed to aqueous metals, both singly and in combination, over 10 d. Spirorbid mortality was tolerant to copper (median lethal concentration [LC50], 570 ,g/L), zinc (LC50, >4,910 ,g/L), and lead (LC50, >2,905 ,g/L); however, spirorbid behavior responded to copper concentrations as low as 20,g/L. When in combination, zinc significantly reduced mortality caused by copper. A novel technique was used to resuspend sediments spiked with four concentrations of three metals (up to 450 ,g/g dry wt of copper, 525 ,g/g dry wt of lead, and 2,035 ,g/g dry wt of zinc). The response of spirorbids to unfiltered suspended sediment solutions and filtered solutions (aqueous metal exposure) was measured. Suspended sediments were toxic to filter-feeding spirorbids at concentrations approximating those found in contaminated Antarctica areas. Toxicity resulted both from aqueous metals and from metals associated with the suspended sediments, although suspended clean sediments had no impact. To our knowledge, the present study is the first to show that resuspension of contaminated sediments can be an important pathway for toxicity to Antarctic hard substrate organisms. Based on the present results, current sediment-quality guidelines used in the evaluation of Australian sediments may be applicable to Antarctic ecosystems. [source]


Cold stress and acclimation , what is important for metabolic adjustment?

PLANT BIOLOGY, Issue 3 2010
A. Janská
Abstract As sessile organisms, plants are unable to escape from the many abiotic and biotic factors that cause a departure from optimal conditions of growth and development. Low temperature represents one of the most harmful abiotic stresses affecting temperate plants. These species have adapted to seasonal variations in temperature by adjusting their metabolism during autumn, increasing their content of a range of cryo-protective compounds to maximise their cold tolerance. Some of these molecules are synthesised de novo. The down-regulation of some gene products represents an additional important regulatory mechanism. Ways in which plants cope with cold stress are described, and the current state of the art with respect to both the model plant Arabidopsis thaliana and crop plants in the area of gene expression and metabolic pathways during low-temperature stress are discussed. [source]


Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: discovery of bifunctional O - and C -glucosyltransferases

THE PLANT JOURNAL, Issue 6 2008
Fernando Gandia-Herrero
Summary Plants, as predominantly sessile organisms, have evolved complex detoxification pathways to deal with a diverse range of toxic chemicals. The elasticity of this stress response system additionally enables them to tackle relatively recently produced, novel, synthetic pollutants. One such compound is the explosive 2,4,6-trinitrotoluene (TNT). Large areas of soil and groundwater are contaminated with TNT, which is both highly toxic and recalcitrant to degradation, and persists in the environment for decades. Although TNT is phytotoxic, plants are able to tolerate low levels of the compound. To identify the genes involved in this detoxification process, we used microarray analysis and then subsequently characterized seven uridine diphosphate (UDP) glycosyltransferases (UGTs) from Arabidopsis thaliana (Arabidopsis). Six of the recombinantly expressed UGTs conjugated the TNT-transformation products 2- and 4-hydroxylaminodinitrotoulene, exhibiting individual bias for either the 2- or the 4-isomer. For both 2- and 4-hydroxylaminodinitrotoulene substrates, two monoglucose conjugate products, confirmed by HPLC-MS-MS, were observed. Further analysis indicated that these were conjugated by either an O - or C -glucosidic bond. The other major compounds in TNT metabolism, aminodinitrotoluenes, were also conjugated by the UGTs, but to a lesser extent. These conjugates were also identified in extracts and media from Arabidopsis plants grown in liquid culture containing TNT. Overexpression of two of these UGTs, 743B4 and 73C1, in Arabidopsis resulted in increases in conjugate production, and enhanced root growth in 74B4 overexpression seedlings. Our results show that UGTs play an integral role in the biochemical mechanism of TNT detoxification by plants. [source]


Biogeographical and ecological context for managing threats to coral and rocky reef communities in the Lord Howe Island Marine Park, south-western Pacific

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 4 2010
Graham J. Edgar
Abstract 1.Quantitative subtidal surveys of fishes, macro-invertebrates and sessile organisms at 33 sites within the Lord Howe Island Marine Park revealed a rich fauna and flora, including 164 fishes, 40 mobile invertebrate taxa, 53 coral and other sessile invertebrate taxa, 32 algal taxa, and two seagrasses. The biota in this newly-zoned marine park was overwhelmingly tropical when species lists were tabulated; however, species with distributions centred on temperate coasts of eastern Australia and New Zealand occurred in disproportionately high densities compared with the tropical species. 2.Lord Howe Island reefs were generally in good condition. Virtually no bleached coral was observed (0.2% of the reef surface; 0.8% of total hard coral cover). Living scleractinian coral comprised the predominant group of organisms growing on reef surfaces, with 25.5% cover overall. Other major taxa observed were brown algae (18.8% cover) and red algae (16.9% cover). 3.Three distinctive community types were identified within the marine park,coral reefs, macroalgal beds and an offshore/open coast community. The distribution of these community types was strongly related to wave exposure, as indicated by an extremely high correlation with the first principal coordinates axis for biotic data (R2=0.80). 4.The close (<3,km) proximity of tropical coral and temperate macroalgal community types off Lord Howe Island is highly unusual, with localized patterns of nutrient enrichment suggested as the primary cause. The macroalgal community type is only known from a small area off the south-western coast that is not protected from fishing. This community is considered highly susceptible to threats because of potential impacts of global warming and the possibility of expansion of sea urchin barrens. Coral bleaching and ocean acidification associated with global climate change also threaten the coral reef community, which includes relatively high numbers of endemic and near endemic fish species. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Biotic affinities of rocky reef fishes, invertebrates and macroalgae in different zones of the Port Davey marine protected area, south-western Tasmania

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 3 2010
Graham J. Edgar
Abstract 1.Assemblages of fishes, invertebrates, and macroalgae showed strong and predictable distributional patterns within the newly declared Port Davey marine protected area (MPA) in south-western Tasmania. Biotic assemblages in the eastern estuarine section of the MPA within Bathurst Channel were extremely anomalous, both in relation to biota elsewhere in the Port Davey region and also to those present along the wider Tasmanian and Australian coasts. Much of this variation was due to the phenomenon of deepwater emergence, with species in 5,m water depth in eastern Bathurst Channel possessing a mean maximum recorded depth of 200,m, compared with<80,m for the same metric when calculated for sites studied elsewhere around Australia. Deepwater emergence in Bathurst Channel was particularly notable for sessile organisms, although also evident among fishes and mobile macro-invertebrates. 2.Quantitative baseline surveys of reef-associated species were undertaken at sites interspersed among MPA management zone types and biotic community types, thereby providing an appropriate benchmark for assessing ecological changes in different management zones within the Port Davey region through the long term. Distinctive biota present in eastern and western Bathurst Channel, and eastern Port Davey, are well protected within ,no-take' sanctuary zones; however, a bias in location of sanctuary zones towards areas with little fishery resources resulted in less protection for the western Port Davey biota, which also extends along the open coast. Although the lack of high level protection for sites with fishery resources detracts from conservation goals, the Port Davey MPA nevertheless represents a major advance in environmental protection because the ecologically unique, fully protected locations are a necessary inclusion within any comprehensive Australian MPA network. Copyright © 2009 John Wiley & Sons, Ltd. [source]