Sequences Used (sequence + used)

Distribution by Scientific Domains


Selected Abstracts


Assessment of regional differences in myocardial blood flow using T2 -weighted 3D BOLD imaging

MAGNETIC RESONANCE IN MEDICINE, Issue 3 2001
Kara B. Wright
Abstract The feasibility of detecting regional differences in myocardial blood flow based on the blood oxygen level-dependent (BOLD) effect was evaluated in vivo in dogs (N = 9) using a 3D T2 -prepared segmented gradient-echo sequence at 1.5 T. Regional differences in myocardial blood flow were created by administering adenosine through a catheter placed in the left circumflex coronary artery (LCX). The difference in the R2 (1/T2) relaxation rate between the left ventricular myocardial region supplied by the LCX and regions supplied by the left anterior descending coronary artery (LAD) or septal artery during adenosine administration was correlated to the corresponding regional myocardial blood flow difference determined using fluorescent microspheres. A correlation coefficient of 0.80 was found between the MR BOLD measurements and the myocardial flow assessment. Our results show that the sequence used in this study allows fast 3D BOLD imaging of the heart, and is a promising technique for detecting regional myocardial perfusion differences. Magn Reson Med 46:573,578, 2001. © 2001 Wiley-Liss, Inc. [source]


Which pulse sequence is optimal for myo-inositol detection at 3T?

NMR IN BIOMEDICINE, Issue 4 2009
Ileana Hancu
Abstract Optimized myo-inositol (mI) detection is important for diagnosing and monitoring a multitude of pathological conditions of the brain. Simulations are presented in this work, performed to decide which pulse sequence has the most significant advantage in terms of improving repeatability and accuracy of mI measurements at 3T over the pulse sequence used typically in the clinic, a TE,=,35,ms PRESS sequence. Five classes of pulse sequences, four previously suggested for optimized mI detection (a short TE PRESS, a Carr-Purcell PRESS sequence, an optimized STEAM sequence, an optimized zero quantum filter), and one optimized for mI detection in this work (a single quantum filter) were compared to a standard, TE,=,35,ms pulse sequence. While limiting the SNR of an acquisition to the equivalent SNR of a spectrum acquired in 5,min from an 8,cc voxel, it was found through simulations that the most repeatable mI measurements would be obtained with a Carr-Purcell sequence. This sequence was implemented in a clinical scanner, and improved mI measurements were demonstrated in vivo. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Methods and applications of diffusion imaging of vertebral bone marrow

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 6 2006
José G. Raya MSc
Abstract Diffusion-weighted imaging (DWI) is an MRI technique that is sensitive to random water movements at spatial scales far below typical MRI voxel dimensions. DWI is a valuable tool for the diagnoses of diseases that involve alterations in water mobility. In the spine, DWI has proven to be a highly useful method for the differential diagnosis of benign and malignant compression fractures. In these pathologies, the microscopic structure of bone marrow is altered in a very different ways, leading to different water mobility, which can be depicted by DWI. Most of the pulse sequences developed for MRI can be adapted for DWI. However, these DWI-adapted sequences are frequently affected by artifacts, mostly caused by physiological motion. Therefore, the introduction of additional correction techniques, or even the development of new sequences is necessary. The first part of this article describes the principles of DWI and the sequences used for DWI of the spine: spin echo (SE), turbo spin echo (TSE), single-shot echo planar imaging (EPI), and steady-state free precession (SSFP) sequences. In the second part, clinical applications of DWI of the spinal bone marrow are extensively discussed. J. Magn. Reson. Imaging 2006. © 2006 Wiley-Liss, Inc. [source]


SNP discovery in Litopenaeus vannamei with a new computational pipeline

ANIMAL GENETICS, Issue 1 2009
D. M. Gorbach
Summary Litopenaeus vannamei (Pacific white shrimp) have been farmed in the Americas for many years and are growing in popularity in Asia with the development of specific pathogen-free stocks. The full genomic sequence of this species might not be available in the near future, so other tools are needed to discover the location of polymorphic sites for quantitative trait loci mapping, association studies and subsequent marker-assisted selection. Currently, 25 937 L. vannamei expressed sequence tags (ESTs) are publicly available. These sequences were manually screened, masked for tandem repeats and inputted into CAP3 for clustering. The resulting 3532 contigs were analysed for possible single nucleotide polymorphisms (SNPs) with snpidentifier, a newly developed computer program for predicting SNPs. snpidentifier is designed for ESTs without accompanying chromatogram sequence quality information, and therefore it performs quality control checks on all data. snpidentifier sets a threshold such that the sequences used have a poor quality nucleotide (N) frequency <0.1, and it trims off the first 10 bases of every sequence to ensure higher sequence quality. For a base to be predicted as an SNP, the minor nucleotide (allele) frequency must be >0.1, it must be observed at least four times and the 15 bases on either side must exactly match the consensus sequence. Using these conservative parameters, 504 SNPs were predicted from 141 contigs for L. vannamei. A small sample of 18 individuals from three lines have been sequenced to verify prediction results and 17 of 39 (44%) of the tested SNPs have been confirmed. [source]


Ribosomal DNA pseudogenes are widespread in the eucalypt group (Myrtaceae): implications for phylogenetic analysis

CLADISTICS, Issue 2 2008
Michael J. Bayly
Pseudogenes from the 18S,5.8S,26S cistron of nuclear ribosomal DNA are reported in the eucalypt group (Myrtaceae), which includes seven genera. Putative pseudogenes are identified by a range of sequence comparisons including: the number of CpG and CpNpG methylation sites, GC content, estimated secondary structure stability of internal transcribed spacer transcripts, the presence of conserved motifs, patterns of sequence relationships and inferred substitution patterns. These comparisons indicate that pseudogenes are widespread, being evident in Eucalyptus (subgenera Eucalyptus and Eudesmia), Corymbia (extracodical sections Rufaria, Ochraria and Blakearia), Angophora, Stockwellia quadrifida and Arillastrum gummiferum. At least six sequences used in previous phylogenetic studies are identified as pseudogenes, and a further 10 pseudogenes are newly sequenced here. Gene trees place pseudogenes in a number of distinct lineages: pseudogenes from Eucalyptus group with other Eucalyptus sequences, those from Corymbia and Angophora group with other Corymbia/Angophora sequences, that from Stockwellia groups with other sequences from the Eucalyptopsis group, and that from Arillastrum is placed as sister to the other included sequence of Arillastrum. Some pseudogenes in Eucalyptus, Corymbia and Angophora represent "deep" ribosomal DNA paralogues that pre-date species differentiation in these groups, and a recombination analysis shows no evidence of recombination between putative pseudogenes and their functional counterparts. The presence of divergent paralogues presents both challenges and opportunities for the reconstruction of eucalypt phylogenies using ribosomal DNA sequences. Phylogenetic data sets should include only orthologous sequences, but different paralogues potentially provide additional, independent, character sets for phylogenetic analyses. © The Willi Hennig Society 2007. [source]