Sequence Regions (sequence + regions)

Distribution by Scientific Domains


Selected Abstracts


Testing for endemism, genotypic diversity and species concepts in Antarctic terrestrial microalgae of the Tribonemataceae (Stramenopiles, Xanthophyceae)

ENVIRONMENTAL MICROBIOLOGY, Issue 3 2009
Nataliya Rybalka
Summary The genetic diversity of all available culture strains of the Tribonemataceae (Stramenopiles, Xanthophyceae) from Antarctica was assessed using the chloroplast-encoded psbA /rbcL spacer region sequences, a highly variable molecular marker, to test for endemism when compared with their closest temperate relatives. There was no species endemic for Antarctica, and no phylogenetic clade corresponded to a limited geographical region. However, species of the Tribonemataceae may have Antarctic populations that are distinct from those of other regions because the Antarctic strain spacer sequences were not identical to sequences from temperate regions. Spacer sequences from five new Antarctic isolates were identical to one or more previously available Antarctic strains, indicating that the Tribonemataceae diversity in Antarctic may be rather limited. Direct comparisons of the spacer sequences and phylogenetic analyses of the more conserved rbcL gene revealed that current morphospecies were inadequate to describe the actual biodiversity of the group. For example, the genus Xanthonema, as currently circumscribed, was paraphyletic. Fortunately, the presence of distinctive sequence regions within the psbA/rbcL spacer, together with differences in the rbcL phylogeny, provided significant autoapomorphic criteria to re-define the Tribonemataceae species. [source]


Identification of Helicobacter pylori and the cagA genotype in gastric biopsies using highly sensitive real-time PCR as a new diagnostic tool

FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 3 2005
Shiho Yamazaki
Abstract The CagA protein is one of the virulence factors of Helicobacter pylori, and two major subtypes of CagA have been observed, the Western and East Asian type. CagA is injected from the bacteria into gastric epithelial cells, undergoes tyrosine phosphorylation, and binds to Src homology 2 domain-containing protein-tyrosine phosphatase SHP-2. The East Asian type CagA binds to SHP-2 more strongly than the Western type CagA. Here, we tried to distinguish the CagA type by highly sensitive real-time PCR with the objective of establishing a system to detect H. pylori and CagA subtypes from gastric biopsies. We designed primers and probe sets for Western or East Asian- cagA at Western-specific or East Asian-specific sequence regions, respectively, and H. pylori 16S rRNA. We could detect the H. pylori 16S rRNA gene, Western and East Asian- cagA gene from DNA of gastric biopsies. The sensitivity and specificity for H. pylori infection was 100% in this system. In Thai patients, 87.8% (36/41) were cagA -positive; 26.8% (11/41) were Western- cagA positive and 53.7% (22/41) were East Asian- cagA positive, while 7.3% (3/41) reacted with both types of cagA. These results suggest that this real-time PCR system provides a highly sensitive assessment of CagA type as a new diagnostic tool for the pathogenicity of H. pylori infection. [source]


16S rDNA Sequence Analysis of Bacterial Isolates from Die-back Affected Sissoo Trees (Dalbergia sissoo Roxb.) in Bangladesh

JOURNAL OF PHYTOPATHOLOGY, Issue 9 2005
H. Tantau
Abstract A new form of disease called ,die-back' has been established in Dalbergia sissoo trees. This disease has reached epidemic proportions in Bangladesh as well as in other countries of South Asia and is characterized by browning of the leaves, signs of wilting, and trunk lesions with gum flow. The trees die within a few months. In order to investigate the causes of this die-back disease, samples were taken for a first trial in the Rajshahi division at two sites around Sherpur. For the isolation of bacteria, surface-sterilized plant material (leaves, twigs and trunk bark) from diseased trees was transferred to LB medium and incubated. After isolation of single colonies, various bacteria species could be identified by polymerase chain reaction analysis with two primers specific for highly conserved sequence regions in the bacterial 16S rDNA and by sequencing. First indications for the presence of bacteria with phytopathogenic potential were found. [source]


Structural characterization of the N-terminal mineral modification domains from the molluscan crystal-modulating biomineralization proteins, AP7 and AP24

BIOPOLYMERS, Issue 5 2004
Brandon A. Wustman
Abstract The AP7 and AP24 proteins represent a class of mineral-interaction polypeptides that are found in the aragonite-containing nacre layer of mollusk shell (H. rufescens). These proteins have been shown to preferentially interfere with calcium carbonate mineral growth in vitro. It is believed that both proteins play an important role in aragonite polymorph selection in the mollusk shell. Previously, we demonstrated the 1,30 amino acid (AA) N-terminal sequences of AP7 and AP24 represent mineral interaction/modification domains in both proteins, as evidenced by their ability to frustrate calcium carbonate crystal growth at step edge regions. In this present report, using free N-terminal, C, -amide "capped" synthetic polypeptides representing the 1,30 AA regions of AP7 (AP7-1 polypeptide) and AP24 (AP24-1 polypeptide) and NMR spectroscopy, we confirm that both N-terminal sequences possess putative Ca (II) interaction polyanionic sequence regions (2 × ,DD, in AP7-1, ,DDDED, in AP24-1) that are random coil-like in structure. However, with regard to the remaining sequences regions, each polypeptide features unique structural differences. AP7-1 possesses an extended ,-strand or polyproline type II-like structure within the A11,M10, S12,V13, and S28,I27 sequence regions, with the remaining sequence regions adopting a random-coil-like structure, a trait common to other polyelectrolyte mineral-associated polypeptide sequences. Conversely, AP24-1 possesses random coil-like structure within A1,S9 and Q14,N16 sequence regions, and evidence for turn-like, bend, or loop conformation within the G10,N13, Q17,N24, and M29,F30 sequence regions, similar to the structures identified within the putative elastomeric proteins Lustrin A and sea urchin spicule matrix proteins. The similarities and differences in AP7 and AP24 N-terminal domain structure are discussed with regard to joint AP7,AP24 protein modification of calcium carbonate growth. © 2004 Wiley Periodicals, Inc. Biopolymers 2004 [source]