Home About us Contact | |||
Separation Efficiency (separation + efficiency)
Kinds of Separation Efficiency Selected AbstractsA Study on Increasing Separation Efficiency of an Industrial, Compound Distillation ColumnASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1-2 2002Shengjing Mu Simulation of a multistage distillation column is often required for its design and operation A debottieneck study for an acetic acid (HAc) dehydration column is presented in this paper. The column is consists of 4 structured packing sections at the top, a sieve tray section with smaller diameter in the middle, and a sieve tray section with larger diameter at the bottom By using steady-state simulation, the bottleneck to increasing the efficiency of separation is identified to be the middle sieve tray section with smaller diameter and smaller tray spacing Renovation schemes without any additional investment on equipment are proposed [source] CFD Simulation of Inlet Design Effect on Deoiling Hydrocyclone Separation EfficiencyCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 12 2009S. Noroozi Abstract An Eulerian-Eulerian three-dimensional CFD model was developed to study the effect of different inlet designs on deoiling hydrocyclone separation efficiency. Reynolds averaged Navier Stokes and continuity equations were applied to solve steady turbulent flow through the cyclone with the Reynolds stress model. In addition, the modified drag correlation for liquid-liquid emulsion with respect to the Reynolds number range and viscosity ratio of two phases was used and the simulation results were compared with those predicted by the Schiller-Naumann correlation. Pressure profile, tangential and axial velocities and separation efficiency of the deoiling hydrocyclone were calculated for four different inlet designs and compared with the standard design. The simulation results for the standard design demonstrate an acceptable agreement with reported experimental data. The results show that all new four inlet designs offer higher efficiencies compared to the standard design. The difference between the efficiency of the LLHC, of the new inlets and the standard design can be improved by increasing the inlet velocity. Furthermore, the simulations show that the separation efficiency can be improved by about 10 % when using a helical form of inlet. [source] STUDY ON IMPROVEMENT OF THE QUALITY IN CHINESE NEW-TYPE LIQUOR BY PERVAPORATION WITH POLYDIMETHYLSILOXANE MEMBRANEJOURNAL OF FOOD PROCESS ENGINEERING, Issue 1 2007ER SHI ABSTRACT A composite polydimethylsiloxane (PDMS) membrane was used to separate aroma compounds from Chinese new-type liquor by pervaporation at 30, 35 and 40C and 10-mmHg downstream pressure. The gas chromatography analysis of aroma compounds in the retentate and permeate showed that PDMS membrane had excellent separation performance. Separation efficiencies for five kinds of esters (except ethyl lactate) and acetal in the original liquor are 100%, over 70% for alcohols (except methanol) and above 87% for aldehyde. The average flux for ethanol reached 3,539 g/m2 · h at 40C. Sensory analysis of the separated ingredients indicates that the sensory quality of the new liquor was significantly superior to that of the original liquor. Experiments suggest that pervaporation is a promising technique for the improvement of Chinese new-type liquor in terms of its flavor. [source] High-performance separation of small inorganic anions on a methacrylate-based polymer monolith grafted with [2(methacryloyloxy)ethyl] trimethylammonium chlorideJOURNAL OF SEPARATION SCIENCE, JSS, Issue 15-16 2009Damian Connolly Abstract A glycidyl methacrylate- co -ethylene dimethacrylate monolith in capillary format (100 ,m/id) has been grafted with chains of poly([2(methacryloyloxy)ethyl] trimethylammonium chloride (poly-META) and applied to the ion-chromatographic separation of selected inorganic anions. Grafting chains of META onto the generic monolithic scaffold resulted in a monolith with ,electrolyte responsive flow permeability', which manifested as increased permeability in the presence of electrolyte solutions. Using an eluent of 2 mM sodium benzoate and on-column contactless conductivity detection, a test mixture of six common anions was isocratically separated and detected within 12 min, with the first four anions baseline resolved within a retention time window of 3.2 min. Retention time precision was ,1.2% for all anions tested. Separation efficiencies of 15 000 N/m were achieved for fluoride at 1 ,L/min, with column efficiencies up to 29 500 N/m obtained at a lower flow rate of 100 nL/min. Furthermore, repeatability of the column modification procedure using photografting methods was acceptable, with retention times between replicate columns matching within 9%. [source] Capillary electrophoresis-time of flight-mass spectrometry using noncovalently bilayer-coated capillaries for the analysis of amino acids in human urineELECTROPHORESIS, Issue 12 2008Rawi Ramautar Abstract A capillary electrophoresis-time of flight-mass spectrometry (CE-TOF-MS) method for the analysis of amino acids in human urine was developed. Capillaries noncovalently coated with a bilayer of Polybrene (PB) and poly(vinyl sulfonate) (PVS) provided a considerable EOF at low pH, thus facilitating the fast separation of amino acids using a BGE of 1,M formic acid (pH,1.8). The PB,PVS coating proved to be very consistent yielding stable CE-MS patterns of amino acids in urine with favorable migration time repeatability (RSDs <2%). The relatively low sample loading capacity of CE was circumvented by an in-capillary preconcentration step based on pH-mediated stacking allowing 100-nL sample injection (i.e. ca. 4% of capillary volume). As a result, LODs for amino acids were down to 20,nM while achieving satisfactory separation efficiencies. Preliminary validation of the method with urine samples showed good linear responses for the amino acids (R2 >0.99), and RSDs for peak areas were <10%. Special attention was paid to the influence of matrix effects on the quantification of amino acids. The magnitude of ion suppression by the matrix was similar for different urine samples. The CE-TOF-MS method was used for the analysis of urine samples of patients with urinary tract infection (UTI). Concentrations of a subset of amino acids were determined and compared with concentrations in urine of healthy controls. Furthermore, partial least squares,discriminant analysis (PLS,DA) of the CE-TOF-MS dataset in the 50,450,m/z region showed a distinctive grouping of the UTI samples and the control samples. Examination of score and loadings plot revealed a number of compounds, including phenylalanine, to be responsible for grouping of the samples. Thus, the CE-TOF-MS method shows good potential for the screening of body fluids based on the analysis of endogenous low-molecular weight metabolites such as amino acids and related compounds. [source] Rapid capillary electrophoresis time-of-flight mass spectrometry separations of peptides and proteins using a monoquaternarized piperazine compound (M7C4I) for capillary coatingsELECTROPHORESIS, Issue 8 2008Anisa Elhamili Abstract A monoquaternarized piperazine, 1-(4-iodobutyl) 4-aza-1-azoniabicyclo[2,2,2] octane iodide (M7C4I), has been evaluated as a surface derivatization reagent for CE in combination with TOF MS for the analysis of proteins, peptides, and protein digests. The M7C4I piperazine, at alkaline pH, forms a covalent bond via alkylation of the ionized silanols producing a cationic surface with a highly stable and reversed EOF. The obtained surface yields rapid separations (less than 5,min) of peptides and proteins at acidic pH with high separation efficiencies (up to 1.1×106 plates/m for peptides and up to 1.8×106 plates/m for proteins) and no observed bleeding of the coating reagent into the mass spectrometer. The simplicity of the coating procedure also enables fast (2,min) regeneration of the surface, if necessary. This is useful in the analysis of complex samples in order to prevent possible memory effects. The potential of using M7C4I-coated capillaries for MS analysis of complex samples is demonstrated by the separation of peptides, proteins, and protein digests. Even more, the spectacular thing in which large intact proteins with molecular masses over 0.5,MDa could be separated. The coating showed good ability to handle these large proteins with high efficiency and retained peak shape as demonstrated by separation of IgG1 (150,kDa) and thyroglobulin (669,kDa). [source] High-sensitivity detection of biological amines using fast Hadamard transform CE coupled with photolytic optical gatingELECTROPHORESIS, Issue 17 2007Kevin L. Braun Abstract Here, we report the first utilization of Hadamard transform CE (HTCE), a high-sensitivity, multiplexed CE technique, with photolytic optical gating sample injection of caged fluorescent labels for the detection of biologically important amines. Previous implementations of HTCE have relied upon photobleaching optical gating sample injection of fluorescent dyes. Photolysis of caged fluorescent labels reduces the fluorescence background, providing marked enhancements in sensitivity compared to photobleaching. Application of fast Hadamard transform CE (fHTCE) for fluorescein-based dyes yields a ten-fold higher sensitivity for photolytic injections compared to photobleaching injections, due primarily to the reduced fluorescent background provided by caged fluorescent dyes. Detection limits as low as 5,pM (ca. 18,molecules per injection event) were obtained with on-column LIF detection using fHTCE in less than 25,s, with the capacity for continuous, online separations. Detection limits for glutamate and aspartate below 150,pM (1,2,amol/injection event) were obtained using photolytic sample injection, with separation efficiencies exceeding 1×106,plates/m and total multiplexed separation times as low as 8,s. These results strongly support the feasibility of this approach for high-sensitivity dynamic chemical monitoring applications. [source] Electrokinetic-driven microfluidic system in poly(dimethylsiloxane) for mass spectrometry detection integrating sample injection, capillary electrophoresis, and electrospray emitter on-chipELECTROPHORESIS, Issue 24 2005Sara Thorslund Abstract A novel microsystem device in poly(dimethylsiloxane) (PDMS) for MS detection is presented. The microchip integrates sample injection, capillary electrophoretic separation, and electrospray emitter in a single substrate, and all modules are fabricated in the PDMS bulk material. The injection and separation flow is driven electrokinetically and the total amount of external equipment needed consists of a three-channel high-voltage power supply. The instant switching between sample injection and separation is performed through a series of low-cost relays, limiting the separation field strength to a maximum of 270,V/cm. We show that this set-up is sufficient to accomplish electrospray MS analysis and, to a moderate extent, microchip separation of standard peptides. A new method of instant in-channel oxidation makes it possible to overcome the problem of irreversibly bonded PDMS channels that have recovered their hydrophobic properties over time. The fast method turns the channel surfaces hydrophilic and less prone to nonspecific analyte adsorption, yielding better separation efficiencies and higher apparent peptide mobilities. [source] Capillary electrophoresis-laser induced fluorescence-electrospray ionization-mass spectrometry: A case studyELECTROPHORESIS, Issue 7-8 2005Carolin Huhn Abstract The simultaneous hyphenation of capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection and electrospray ionization-mass spectrometry (ESI-MS) as a novel combined detection system for CE is presented. ,-Carbolines were chosen as model analytes with a forensic background. Nonaqueous CE as well as conventional CE with an aqueous buffer system are compared concerning efficiency and obtainable detection limits. The distance between the optical detection window and the sprayer tip was minimized by placing the optical cell directly in front of the electrospray interface. Similar separation efficiencies for both detection modes could thus be obtained. No significant peak-broadening induced by the MS interface was observed. The high fluorescence quantum yield and the high proton affinity of the model analytes investigated resulted in limits of detection in the fg (nmol/L) range for both detection methods. The analysis of confiscated ayahuasca samples and ethanolic plant extracts revealed complementary selectivities for LIF and MS detection. Thus, it is possible to improve peak identification of the solutes investigated by the use of these two detection principles. [source] Photophysics and Photocurrent Generation in Polythiophene/Polyfluorene Copolymer BlendsADVANCED FUNCTIONAL MATERIALS, Issue 19 2009Christopher R. McNeill Abstract Here, studies on the evolution of photophysics and device performance with annealing of blends of poly(3-hexylthiophene) with the two polyfluorene copolymers poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2,,2,,-diyl) (F8TBT) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) are reported. In blends with F8TBT, P3HT is found to reorganize at low annealing temperatures (100,°C or below), evidenced by a redshift of both absorption and photoluminescence (PL), and by a decrease in PL lifetime. Annealing to 140,°C, however, is found to optimize device performance, accompanied by an increase in PL efficiency and lifetime. Grazing-incidence small-angle X-ray scattering is also performed to study the evolution in film nanomorphology with annealing, with the 140,°C-annealed film showing enhanced phase separation. It is concluded that reorganization of P3HT alone is not sufficient to optimize device performance but must also be accompanied by a coarsening of the morphology to promote charge separation. The shape of the photocurrent action spectra of P3HT:F8TBT devices is also studied, aided by optical modeling of the absorption spectrum of the blend in a device structure. Changes in the shape of the photocurrent action spectra with annealing are observed, and these are attributed to changes in the relative contribution of each polymer to photocurrent as morphology and polymer conformation evolve. In particular, in as-spun films from xylene, photocurrent is preferentially generated from ordered P3HT segments attributed to the increased charge separation efficiency in ordered P3HT compared to disordered P3HT. For optimized devices, photocurrent is efficiently generated from both P3HT and F8TBT. In contrast to blends with F8TBT, P3HT is only found to reorganize in blends with F8BT at annealing temperatures of over 200,°C. The low efficiency of the P3HT:F8BT system can then be attributed to poor charge generation and separation efficiencies that result from the failure of P3HT to reorganize. [source] Preparation and characterization of C16 monolithic columns for capillary electrochromatographyJOURNAL OF SEPARATION SCIENCE, JSS, Issue 3 2005Kai Zhang Abstract A series of methacrylamide-based C16 monolithic columns were prepared and characterized to determine how their porous structural properties and chromatographic behavior are affected by the percentages of functional monomer, base monomer, and cross-linker in the polymerization solution. Baseline separation of 6 neutral compounds can be readily obtained in an optimized column. Furthermore, the effects of organic additive in the mobile phase, operating voltages, and temperature on retention behaviors and separation efficiencies were also studied. The separation mechanism is also discussed. High column efficiency and good reproducibility indicate that the monolithic columns hold considerable promise. [source] Fast Liquid Chromatography for High-Throughput Screening of PolymersMACROMOLECULAR RAPID COMMUNICATIONS, Issue 1 2003Harald Pasch Abstract Liquid chromatography of polymers is traditionally a slow technique with analysis times of typically 30 min per sample. For the application of liquid chromatographic techniques to combinatorial materials research the analysis time per sample must be reduced considerably. Analysis time in SEC can be reduced to about 2 min per sample when high-throughput columns are used. For HPLC small columns with improved separation efficiencies can be used. As compared to conventional technology, time savings of more than 80% are achieved. Chromatogram from conventional SEC column compared to high-speed SEC column tested on an identical instrument with polystyrene standards in THF. [source] Lectin-aided separation of circulating tumor cells and assay of their response to an anticancer drug in an integrated microfluidic deviceELECTROPHORESIS, Issue 18 2010Li Li Abstract Metastasis caused by the entry of circulating tumor cells (CTCs) into the bloodstream or lymphatic vessels is a major factor contributing to death in cancer patients. Separation of CTCs and studies on CTC,drug interactions are very important for prognostic and therapeutic implications of metastatic cancer. In this study, an integrated microfluidic device for CTC separation through the combination of lectin and microstructure is presented. This microfluidic device and lectin concanavalin A were utilized for the separation of K562 cells in whole blood samples. The results showed that the separation efficiency can reach 84%, which is much higher than that of an experiment without concanavalin A treatment. To further demonstrate the feasibility of this microfluidic device application in sequential studies after target cells were separated, the interactions of K562 cells and an anticancer drug, cytarabine, were also examined. After 6,h on-chip treatment with cytarabine, the viabilities of K562 cells were 85.29, 77.05, and 40% for drug concentration levels of 0.25, 0.5, and 1.0,g/L, respectively. This system can facilitate the rapid and efficient in vitro investigation of CTC separation and CTC-related studies. [source] Synthesis of poly(N, N -dimethylacrylamide)- block -poly(ethylene oxide)- block -poly(N, N -dimethylacrylamide) and its application for separation of proteins by capillary zone electrophoresisELECTROPHORESIS, Issue 10 2010Jing Xu Abstract A series of well-defined triblock copolymers, poly(N, N -dimethylacrylamide)- block -poly(ethylene oxide)- block -poly(N, N -dimethylacrylamide) (PDMA- b -PEO- b -PDMA) synthesized by atom transfer radical polymerization, were used as physical coatings for protein separation. A comparative study of EOF showed that the triblock copolymer presented good capillary coating ability and EOF efficient suppression. The effects of the Mr of PDMA block in PDMA- b -PEO- b -PDMA triblock copolymer and buffer pH on the separation of basic protein for CE were investigated. Moreover, the influence of the copolymer structure on separation of basic protein was studied by comparing the performance of PDMA- b -PEO- b -PDMA triblock copolymer with PEO- b -PDMA diblock copolymer. Furthermore, the triblock copolymer coating showed higher separation efficiency and better migration time repeatability than fused-silica capillary when used in protein mixture separation and milk powder samples separation, respectively. The results demonstrated that the triblock copolymer coatings would have a wide application in the field of protein separation. [source] CEC-ESI ion trap MS of multiple drugs of abuseELECTROPHORESIS, Issue 7 2010Zeineb Aturki Abstract This article describes a method for the separation and determination of nine drugs of abuse in human urine, including amphetamines, cocaine, codeine, heroin and morphine. This method was based on SPE on a strong cation exchange cartridge followed by CEC-MS. The CEC experiments were performed in fused silica capillaries (100,,m×30,cm) packed with a 3,,m cyano derivatized silica stationary phase. A laboratory-made liquid junction interface was used for CEC-MS coupling. The outlet capillary column was connected with an emitter tip that was positioned in front of the MS orifice. A stable electrospray was produced at nanoliter per minute flow rates applying a hydrostatic pressure (few kPa) to the interface. The coupling of packed CEC columns with mass spectrometer as detector, using a liquid junction interface, provided several advantages such as better sensitivity, low dead volume and independent control of the conditions used for CEC separation and ESI analysis. For this purpose, preliminary experiments were carried out in CEC-UV to optimize the proper mobile phase for CEC analysis. Good separation efficiency was achieved for almost all compounds, using a mixture containing ACN and 25,mM ammonium formate buffer at pH 3 (30:70, v/v), as mobile phase and applying a voltage of 12,kV. ESI ion-trap MS detection was performed in the positive ionization mode. A spray liquid, composed by methanol,water (80:20, v/v) and 1% formic acid, was delivered at a nano-flow rate of ,200,nL/min. Under optimized CEC-ESI-MS conditions, separation of the investigated drugs was performed within 13,min. CEC-MS and CEC-MS2 spectra were obtained by providing the unambiguous confirmation of these drugs in urine samples. Method precision was determined with RSDs values ,3.3% for retention times and ,16.3% for peak areas in both intra-day and day-to-day experiments. LODs were established between 0.78 and 3.12,ng/mL for all compounds. Linearity was satisfactory in the concentration range of interest for all compounds (r2,0.995). The developed CEC-MS method was then applied to the analysis of drugs of abuse in spiked urine samples, obtaining recovery data in the range 80,95%. [source] CE coupled to MALDI with novel covalently coated capillariesELECTROPHORESIS, Issue 4 2010Stefan Bachmann Abstract CE offers the advantage of flexibility and method development options. It excels in the area of separation of ions, chiral, polar and biological compounds (especially proteins and peptides). Masking the active sites on the inner surface of a bare fused silica capillary wall is often necessary for CE separations of basic compounds, proteins and peptides. The use of capillary surface coating is one of the approaches to prevent the adsorption phenomena and improve the repeatability of migration times and peak areas of these analytes. In this study, new capillary coatings consisting of (i) derivatized polystyrene nanoparticles and (ii) derivatized fullerenes were investigated for the analysis of peptides and protein digest by CE. The coated capillaries showed excellent run-to-run and batch-to-batch reproducibility (RSD of migration time ,0.5% for run-to-run and ,9.5% for batch-to-batch experiments). Furthermore, the capillaries offer high stability from pH 2.0 to 10.0. The actual potential of the coated capillaries was tested by combining CE with MALDI-MS for analysing complex samples, such as peptides, whereas the overall performance of the CE-MALDI-MS system was investigated by analysing a five-protein digest mixture. Subsequently, the peak list (peptide mass fingerprint) generated from the mass spectra of each fraction was entered into the Swiss-Prot database in order to search for matching tryptic fragments using the MASCOT software. The sequence coverage of analysed proteins was between 36 and 68%. The established technology benefits from the synergism of high separation efficiency and the structure selective identification via MS. [source] Effect of urea on analyte complexation by 2,6-dimethyl-,-CD in peptide enantioseparations by CEELECTROPHORESIS, Issue 21 2009Manuela Hammitzsch-Wiedemann Abstract The aim of the present study was the investigation of the effect of urea on analyte complexation in CD-mediated separations of peptide enantiomers by CE in the pH range of about 2,5. pH-independent complexation and mobility parameters in the absence and presence of 2,M urea were obtained by three-dimensional, non-linear curve fitting of the effective analyte mobility as a function of pH and heptakis-(2,6-di- O -methyl)-,-CD concentration. Urea led to decreased binding strength of the CD towards the protonated and neutral analyte enantiomers as well as to decreased mobilities of the free analytes. In contrast, mobilities of the fully protonated enantiomer,CD complexes as well as the pKa values of the free and complexed analytes increased. The effect of urea on separation efficiency varied with pH and CD concentration. In the case of Ala-Tyr and Ala-Phe, separations improved in the presence of urea at pH 2.2. In contrast, separations were impaired by urea at pH 3.8 and low concentrations of the CD. Decreased separation efficiency was noted for Asp-PheOMe and Glu-PheNH2 at low CD concentrations when urea was added but separations improved at higher CD concentrations over the entire pH range studied. The effect of urea on analyte complexation appeared to be primarily non-stereoselective. Furthermore, the pH-dependent reversal of the enantiomer migration order observed for Ala-Tyr and Ala-Phe can be rationalized by the complexation and mobility parameters. [source] Effects of heterogeneous electron-transfer rate on the resolution of electrophoretic separations based on microfluidics with end-column electrochemical detectionELECTROPHORESIS, Issue 19 2009Joseph Wang Abstract We demonstrate here that the electrode kinetics of an electrochemical detector contributes greatly to the resolution of the analyte bands in microchip electrophoresis systems with amperometric detection. The separation performance in terms of resolution and theoretical plate number can be improved and tailored by selecting or modifying the working electrode and/or by controlling the detection potential. Such improvements in the separation performance reflect the influence of the heterogeneous electron-transfer rate of electroactive analytes upon the post-channel band broadening, as illustrated for catechol and hydrazine compounds. The electrode kinetics thus has a profound effect not only on the sensitivity of electrochemical detectors but on the separation efficiency and the overall performance of microchip electrochemistry systems. [source] Analysis of aristolochic acids by CE-MS with carboxymethyl chitosan-coated capillaryELECTROPHORESIS, Issue 10 2009Xiaofang Fu Abstract A CE-MS method for rapid determination of aristolochic acid-I and aristolochic acid-II (AA-II) in traditional Chinese medicines and biological samples was described in the present paper. AA-I and AA-II can be baseline separated within 6,min by CE-MS with carboxymethyl-chitosan-coated capillary. CZE conditions including pH, concentration of buffer, applied voltage, and capillary temperature were systematically investigated, and the composition and flow rate of sheath liquid were also optimized for CE-MS. Furthermore, the CE-UV method without any additives in BGE solution was established and compared with the CE-MS method. The results showed that the two methods could achieve satisfactory separation efficiency, repeatability, and linearity, while the LOD was 0.6,,g/mL for CE-UV and 0.05,,g/mL for CE-MS. Compared with the CE-UV method, the sensitivity of CE-MS was significantly improved, in addition to the structure information provided by MS detection at the same time. As an application example, a spiked sample in human serum was analyzed by the CE-MS method, indicating that the new CE-MS method can be applied to analyze AAs in biological samples. [source] Evaluation of carrier ampholyte-based capillary electrophoresis for separation of peptides and peptide mimetics,ELECTROPHORESIS, Issue 18 2008an Koval Abstract Carrier ampholyte-based capillary electrophoresis (CABCE) has recently been introduced as an alternative to CE (CZE) in the classical buffers. In this study, isoelectric BGEs were obtained by fractionation of Servalyt pH 4,9 carrier ampholytes to cuts of typical width of 0.2 pH unit. CABCE feasibility was examined on a series of insect oostatic peptides, i.e. proline-rich di- to decapeptides, and phosphinic pseudopeptides , tetrapeptide mimetics synthesized as a mixture of four diastereomers having the ,P(O)(OH),CH2, moiety embedded into the peptide backbone. With identical selectivity, the separation efficiency of CABCE proved to be as good as classical CE for the insect oostatic peptides and better for diastereomers of the phosphinic pseudopeptides. In addition, despite the numerous species present in the narrow pH cuts of carrier ampholytes, CABCE seems to be free of system zones that could hamper the analysis. Peak symmetry was good for moderately to low mobile peptides, whereas some peak distortion due to electromigration dispersion, was observed for short peptides of rather high mobility. [source] Comprehensive proteome analysis of mouse liver by ampholyte-free liquid-phase isoelectric focusingELECTROPHORESIS, Issue 11 2008Hua Zhong Abstract In this study, ampholyte-free liquid-phase IEF (LIEF) was combined with narrow pH range 2-DE and SDS-PAGE RP-HPLC for comprehensive analysis of mouse liver proteome. Because LIEF prefractionation was able to reduce the complexity of the sample and enhance the loading capacity of IEF strips, the number of visible protein spots on subsequent 2-DE gels was significantly increased. A total of 6271 protein spots were detected after integrating five narrow pH range 2-DE gels following LIEF prefractionation into a single virtual 2-DE gel. Furthermore, the pH,3,5 LIEF fraction and the unfractionated sample were separated by pH,3,6 2-DE and identified by MALDI-TOF/TOF MS, respectively. In parallel, the pH 3,5 LIEF fraction was also analyzed by SDS-PAGE RP-HPLC MS/MS. LIEF-2-DE and LIEF-HPLC could obviously improve the separation efficiency and the confidence of protein identification, which identified a higher number of low-abundance proteins and proteins with extreme physicochemical characteristics or post-translational modifications compared to conventional 2-DE method. Furthermore, there were 207 proteins newly identified in mouse liver in comparison with previously reported large-scale datasets. It was observed that the combination of LIEF-2-DE and LIEF-HPLC was effective in promoting MS-based liver proteome profiling and could be applied on similar complex tissue samples. [source] Determination of tobacco-specific N -nitrosamines in rabbit serum by capillary zone electrophoresis and capillary electrophoresis-electrospray ionization-mass spectrometry with solid-phase extractionELECTROPHORESIS, Issue 11 2006Chenchen Li Abstract In this paper, we propose a new strategy for separation and determination of tobacco-specific N -nitrosamines (TSNAs), a group of strong carcinogens found only in tobacco products, by using CZE and CE-MS associated with SPE. Six TSNAs: N'-nitrosonornicotine, N'-nitrosoanatabine, N'-nitrosoanabasine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol, and 4-(methylnitrosamino)-4-(3-pyridyl)-1-butanol were simultaneously separated by either of two CZE methods, one of which worked with ammonium formate buffer (pH,2.5) and another with citrate buffer (pH,2.4), as well as a CE-MS method. The CZE conditions including pH and concentration of running buffer, capillary length, applied voltage, and capillary temperature were systematically optimized. For CE-MS method, an optimized sheath liquid consisted of methanol,water was used at a flow rate of 10,,L/min. With SPE procedure, our proposed CE-MS method was successfully applied to determine TSNAs after 15,min metabolism in rabbits. A comparison study between CZE and CE-MS methods for quantitative purposes was carried out, showing that both methods provided similar separation efficiency, selectivity, repeatability, linearity, and recovery. However, CE-MS method was better suited for the analysis of TSNAs in complicated biological samples for its sensitivity and extra information on molecular structure. Having good accordance with our previous work by using LC-MS, the new CE-MS method is expected to be an alternative to the LC-MS method and applied to study the metabolism of TSNAs. [source] Combination of cationic surfactant-assisted solid-phase extraction with field-amplified sample stacking for highly sensitive analysis of chlorinated acid herbicides by capillary zone electrophoresisELECTROPHORESIS, Issue 18 2005Yan Xu Abstract This report describes a novel online field-amplified sample stacking (FASS) procedure to analyze 16 chlorinated acid herbicides. By using a poly(vinyl alcohol) (PVA)-coated capillary to reduce electroosmotic flow and introducing a methanol,water plug before sample loading, the sample injection time could be very long without loss of sample and separation efficiency. Under the optimized condition, the FASS procedure could provide great sensitivity enhancement (5000,10,000-fold) and satisfactory reproducibility (relative standard deviations of migration times less than 2.4%, relative standard deviations of peak areas less than 8.0%). Combined with cationic surfactant-assisted solid-phase extraction (CSA-SPE), the limit of detection of the herbicides ranged from 0.269 to 20.3,ppt, which are two orders lower than those of the US Environmental Protection Agency standard method 515.1. The CSA-SPE-FASS-CE method was successfully applied to the analysis of local pond water. [source] Conformational effects on the performance and selectivity of a polymeric pseudostationary phase in electrokinetic chromatographyELECTROPHORESIS, Issue 4-5 2005Jonathan P. McCarney Abstract The effect of the conformation of a polymeric pseudostationary phase on performance and selectivity in electrokinetic chromatography was studied using an amphiphilic pH-responsive polymer that forms compact intramolecular aggregates (unimer micelles) at low pH and a more open conformation at high pH. The change in conformation was found to affect the electrophoretic mobility, retention, selectivity, and separation efficiency. The low-pH conformer has higher electrophoretic mobility and greater affinity for most solutes. The unimer micelle conformation was also found to provide a solvation environment more like that of micelles and other amphiphilic self-associative polymers studied previously. It was not possible to fully characterize the effect of conformation on efficiency, but very hydrophobic solutes with long alkyl chains appeared to migrate with better efficiency when the unimer micelle conformation was employed. The results imply that polymers with a carefully optimized lipophilic-hydrophilic balance that allow self-association will perform better as pseudostationary phases. In addition, the results show that electrokinetic chromatography is a useful method for determining the changes in solvation environment provided by stimuli-responsive polymers with changes in the conditions. [source] Dual stacking of unbuffered saline samples, transient isotachophoresis plus induced pH junction focusingELECTROPHORESIS, Issue 10 2003Sang-Hee Shim Abstract A dual stacking mechanism based on transient isotachophoresis (TITP) and induced pH junction focusing is demonstrated as a means to increase the concentration sensitivity in capillary electrophoresis of highly saline samples. When stacking was carried out with an unbuffered saline sample of fluorescein between two zones of low mobility background electrolyte at high pH under an electric field of reverse polarity, two transient peaks at both boundaries of the sample zone were observed. One peak at the rear boundary could be inferred as a transient isotachophoretic stacked zone. Through computer simulations of an unbuffered sample with a high concentration of sodium chloride, we showed that the fast moving zones of sodium and chloride ions induced pH changes at both boundaries to satisfy the electroneutrality condition and that the peak at the front boundary was due to the induced pH junction. To verify the pH changes, an indicator, thymol blue, was added to an NaCl solution and the color changes under an electric field were observed. The proposed mechanism was supported by observing the dual stacking procedure for an unbuffered sample of 4-nitrophenol and measuring additional sensitivity enhancements by dual stacking for ten weakly acidic compounds. For the ten analytes including nucleoside phosphates, every dual stacking of an unbuffered sample exhibited an additional enhancement up to 86% larger than that of usual transient isotachophoresis of the corresponding buffered sample without loss of separation efficiency and reproducibility. Therefore, it would be useful to skip over buffering in sample preparation for TITP, contrary to the general recommendation. [source] Capillary electrochromatography with monolithic silica column:,I.ELECTROPHORESIS, Issue 3 2003Preparation of silica monoliths having surface-bound octadecyl moieties, applications to the separation of neutral, charged species, their chromatographic characterization Abstract Monolithic silica columns with surface-bound octadecyl (C18) moieties have been prepared by a sol-gel process in 100 ,m ID fused-silica capillaries for reversed-phase capillary electrochromatography of neutral and charged species. The reaction conditions for the preparation of the C18-silica monoliths were optimized for maximum surface coverage with octadecyl moieties in order to maximize retention and selectivity toward neutral and charged solutes with a sufficiently strong electroosmotic flow (>,2 mm/s) to yield rapid analysis time. Furthermore, the effect of the pore-tailoring process on the silica monoliths was performed over a wide range of treatment time with 0.010 M ammonium hydroxide solution in order to determine the optimum time and conditions that yield mesopores of narrow pore size distribution that result in high separation efficiency. Under optimum column fabrication conditions and optimum mobile phase composition and flow velocity, the average separation efficiency reached 160,000 plates/m, a value comparable to that obtained on columns packed with 3 ,m C18-silica particles with the advantages of high permeability and virtually no bubble formation. The optimized monolithic C18-silica columns were evaluated for their retention properties toward neutral and charged analytes over a wide range of mobile phase compositions. A series of dimensionless retention parameters were evaluated and correlated to solute polarity and electromigration property. A dimensionless mobility modulus was introduced to describe charged solute migration and interaction behavior with the monolithic C18-silica in a counterflow regime during capillary electrochromatography (CEC )separations. The mobility moduli correlated well with the solute hydrophobic character and its charge-to-mass ratio. [source] Photophysics and Photocurrent Generation in Polythiophene/Polyfluorene Copolymer BlendsADVANCED FUNCTIONAL MATERIALS, Issue 19 2009Christopher R. McNeill Abstract Here, studies on the evolution of photophysics and device performance with annealing of blends of poly(3-hexylthiophene) with the two polyfluorene copolymers poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2,,2,,-diyl) (F8TBT) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) are reported. In blends with F8TBT, P3HT is found to reorganize at low annealing temperatures (100,°C or below), evidenced by a redshift of both absorption and photoluminescence (PL), and by a decrease in PL lifetime. Annealing to 140,°C, however, is found to optimize device performance, accompanied by an increase in PL efficiency and lifetime. Grazing-incidence small-angle X-ray scattering is also performed to study the evolution in film nanomorphology with annealing, with the 140,°C-annealed film showing enhanced phase separation. It is concluded that reorganization of P3HT alone is not sufficient to optimize device performance but must also be accompanied by a coarsening of the morphology to promote charge separation. The shape of the photocurrent action spectra of P3HT:F8TBT devices is also studied, aided by optical modeling of the absorption spectrum of the blend in a device structure. Changes in the shape of the photocurrent action spectra with annealing are observed, and these are attributed to changes in the relative contribution of each polymer to photocurrent as morphology and polymer conformation evolve. In particular, in as-spun films from xylene, photocurrent is preferentially generated from ordered P3HT segments attributed to the increased charge separation efficiency in ordered P3HT compared to disordered P3HT. For optimized devices, photocurrent is efficiently generated from both P3HT and F8TBT. In contrast to blends with F8TBT, P3HT is only found to reorganize in blends with F8BT at annealing temperatures of over 200,°C. The low efficiency of the P3HT:F8BT system can then be attributed to poor charge generation and separation efficiencies that result from the failure of P3HT to reorganize. [source] Comparison of plateletpheresis on the Fresenius AS.TEC 204 and Haemonetics MCS 3pJOURNAL OF CLINICAL APHERESIS, Issue 1 2007Sudha Ranganathan Abstract This is an attempt at comparing two cell separators for plateletpheresis, namely the Fresenius AS.TEC 204 and Haemonetics MCS 3p, at a tertiary care center in India. Donors who weighed between 55,75 kg, who had a hematocrit of 41,43%, and platelet counts of 250 × 103,400 × 103/,l were selected for the study. The comparability of the donors who donated on the two cell separators were analysed by t -test independent samples and no significant differences were found (P > 0.05). The features compared were time taken for the procedure, volume processed on the separators, adverse reactions of the donors, quality control of the product, separation efficiency of the separators, platelet loss in the donors after the procedure, and the predictor versus the actual yield of platelets given by the cell separator. The volume processed to get a target yield of >3 × 1011 was equal to 2.8,3.2 l and equal in both the cell separators. Symptoms of citrate toxicity were seen in 4 and 2.5% of donors who donated on the MCS 3p and the AS.TEC 204, respectively, and 3 and 1% of donors, respectively, had vasovagal reactions. All the platelet products collected had a platelet count of >3 × 1011; 90% of the platelet products collected on the AS.TEC 204 attained the predicted yield that was set on the cell separator where as 75% of the platelet products collected on the MCS 3p attained the target yield. Quality control of the platelets collected on both the cell separators complied with the standards except that 3% of the platelets collected on the MCS 3p had a visible red cell contamination. The separation efficiency of the MCS 3p was higher, 50,52% as compared to the 40,45% on the AS.TEC 204. A provision of double venous access, less adverse reactions, negligible RBC contamination with a better predictor yield of platelets makes the AS.TEC 204 a safer and more reliable alternative than the widely used Haemonetics MCS 3p. J. Clin. Apheresis. © 2006 Wiley-Liss, Inc. [source] APPLICATION OF COEFFICIENT OF FRICTION TO THE SEPARATION OF COCOA HUSK,BEANS MIXTUREJOURNAL OF FOOD PROCESS ENGINEERING, Issue 5 2007O.K. OWOLARAFE ABSTRACT Investigation was carried out on the application of coefficient of friction in the separation of cocoa beans,husk mixture. An inclined plane at angles 20, 25 and 35°rotating at different speeds (215, 250 and 260 rpm) and receiving the mixture at heights 30, 60 and 90 mm, was used for the study. The result indicates that within the range of factors considered, the separation efficiency of the beans from the mixture increases with increase in speed of rotation and height of fall, while it decreases with increase in angle of inclination. Statistical analysis shows that the effects of each of the factors and that of their interaction are significant at 99%. The best separation efficiency (99%) was observed at a speed of 250 rpm, an angle of inclination of 25° and a height fall of 90 mm. PRACTICAL APPLICATIONS Separation of cocoa beans from the husks has been a serious problem in cocoa processing. Handpicking is still being used to separate the mixture of cocoa beans,husk even with the mechanical pod breaker available. This therefore constitutes a tedious operation. An inclined plane mechanism tested for the separation of the mixture in this study can be incorporated into the design of the cocoa pod processor to reduce the drudgery involved in cocoa processing and improve the quality of the product. [source] Computational investigation of the mechanisms of particle separation and "fish-hook" phenomenon in hydrocyclonesAICHE JOURNAL, Issue 7 2010B. Wang Abstract The motion of solid particles and the "fish-hook" phenomenon in an industrial classifying hydrocyclone of body diameter 355 mm is studied by a computational fluid dynamics model. In the model, the turbulent flow of gas and liquid is modeled using the Reynolds Stress Model, and the interface between the liquid and air core is modeled using the volume of fluid multiphase model. The outcomes are then applied in the simulation of particle flow described by the stochastic Lagrangian model. The results are analyzed in terms of velocity and force field in the cyclone. It is shown that the pressure gradient force plays an important role in particle separation, and it balances the centrifugal force on particles in the radial direction in hydrocyclones. As particle size decreases, the effect of drag force whose direction varies increases sharply. As a result, particles have an apparent fluctuating velocity. Some particles pass the locus of zero vertical velocity (LZVV) and join the upward flow and have a certain moving orbit. The moving orbit of particles in the upward flow becomes wider as their size decreases. When the size is below a critical value, the moving orbit is even beyond the LZVV. Some fine particles would recircuit between the downward and upward flows, resulting in a relatively high separation efficiency and the "fish-hook" effect. Numerical experiments were also extended to study the effects of cyclone size and liquid viscosity. The results suggest that the mechanisms identified are valid, although they are quantitatively different. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] |