Home About us Contact | |||
Separate Refugia (separate + refugia)
Selected AbstractsGenetic structure of Hypochaeris uniflora (Asteraceae) suggests vicariance in the Carpathians and rapid post-glacial colonization of the Alps from an eastern Alpine refugiumJOURNAL OF BIOGEOGRAPHY, Issue 12 2007Patrik Mráz Abstract Aim, The range of the subalpine species Hypochaeris uniflora covers the Alps, Carpathians and Sudetes Mountains. Whilst the genetic structure and post-glacial history of many high-mountain plant taxa of the Alps is relatively well documented, the Carpathian populations have often been neglected in phylogeographical studies. The aim of the present study is to compare the genetic variation of the species in two major European mountain systems , the Alps and the Carpathians. Location, Alps and Carpathians. Methods, The genetic variation of 77 populations, each consisting of three plants, was studied using amplified fragment length polymorphism (AFLP). Results, Neighbour joining and principal coordinate analyses revealed three well-supported phylogeographical groups of populations corresponding to three disjunct geographical regions , the Alps and the western and south-eastern Carpathians. Moreover, two further clusters could be distinguished within the latter mountain range, one consisting of populations from the eastern Carpathians and the second consisting of populations from the southern Carpathians. Populations from the Apuseni Mountains had an intermediate position between the eastern and southern Carpathians. The genetic clustering of populations into four groups was also supported by an analysis of molecular variance, which showed that most genetic variation (almost 46%) was found among these four groups. By far the highest within-population variation was found in the eastern Carpathians, followed by populations from the southern and western Carpathians. Generally, the populations from the Alps were considerably less variable and displayed substantially fewer region-diagnostic markers than those from the south-eastern Carpathians. Although no clear geographical structure was found within the Alps, based on neighbour joining or principal coordinate analyses, some trends were obvious: populations from the easternmost part were genetically more variable and, together with those from the south-western part, exhibited a higher proportion of rare AFLP fragments than populations in other areas. Moreover, the total number of AFLP fragments per population, the percentage of polymorphic loci and the proportion of rare AFLP fragments significantly decreased from east to west. Main conclusions, Deep infraspecific phylogeographical gaps between the populations from the Alps and the western and south-eastern Carpathians suggest the survival of H. uniflora in three separate refugia during the last glaciation. Our AFLP data provide molecular evidence for a long-term geographical disjunction between the eastern and western Carpathians, previously suggested from the floristic composition at the end of 19th century. It is likely that Alpine populations survived the Last Glacial in the eastern part of the Alps, from where they rapidly colonized the rest of the Alps after the ice sheet retreated. Multiple founder effects may explain a gradual loss of genetic variation during westward colonization of the Alps. [source] Extreme mtDNA divergences in a terrestrial slug (Gastropoda, Pulmonata, Arionidae): accelerated evolution, allopatric divergence and secondary contactJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2005J. PINCEEL Abstract Extremely high levels of intraspecific mtDNA differences in pulmonate gastropods have been reported repeatedly and several hypotheses to explain them have been postulated. We studied the phylogeny and phylogeography of 51 populations (n = 843) of the highly polymorphic terrestrial slug Arion subfuscus (Draparnaud, 1805) across its native distribution range in Western Europe. By combining the analysis of single stranded conformation polymorphisms (SSCP) and nucleotide sequencing, we obtained individual sequence data for a fragment of the mitochondrial 16S rDNA and a fragment of the nuclear ITS1. Additionally, five polymorphic allozyme loci were scored. Based on the 16S rDNA phylogeny, five monophyletic haplotype groups with sequence divergences of 9,21% were found. Despite this deep mitochondrial divergence, the haplotype groups were not monophyletic for the nuclear ITS1 fragment and haplotype group-specific allozyme alleles were not found. Although there is evidence for an accelerated mtDNA clock, the divergence among the haplotype groups is older than the Pleistocene and their current allopatric ranges probably reflect allopatric divergence and glacial survival in separate refugia from which different post-glacial colonization routes were established. A range-overlap of two mtDNA groups (S1 and S2, 21% sequence divergence) stretched from Central France and Belgium up to the North of the British Isles. The nuclear data suggest that this secondary contact resulted in hybridization between the allopatrically diverged groups. Therefore, it seems that, at least for two of the groups, the deep mtDNA divergence was only partially accompanied by the formation of reproductive isolation. [source] Refugial isolation and secondary contact in the dyeing poison frog Dendrobates tinctoriusMOLECULAR ECOLOGY, Issue 14 2006BRICE P. NOONAN Abstract Recent palaeoclimactic research suggests that fluctuating environmental conditions throughout the Pleistocene of Amazonia occurred with previously unrecognized frequency. This has resulted in a theoretical shift from glacially influenced fluctuations to those driven by precessional rhythms. This theoretical revolution has a profound impact on expectations of biotic diversity within biogeographical regions that have long been based on the idea of large-scale landscape fragmentation associated with increased aridity and glacial cycles. Generally speaking, this shifts phylogeographical expectations from that of (i) large areas of sympatry of closely related (but not sister) species whose origins lie in separate refugia, and current distributions are the results of cyclic connectivity of those two refugia (refuge hypothesis), to that of (ii) fine scale genetic structure, often associated with elevation, and divergence well below expected speciation levels [disturbance,vicariance (DV) hypothesis]. To date there have been few tests of the expectations of the DV hypothesis based on empirical studies of Neotropical floral and faunal communities. Herein we examine phylogeographical structure of Dendrobates tinctorius, an amphibian species endemic to the uplands of the eastern Guiana Shield, based on sampling of 114 individuals from 24 localities. Phylogenetic, nested clade, and dispersal,vicariance (DIVA) analyses of cytochrome b sequence data reveal the presence of two mitochondrial lineages that are associated with previously identified western and eastern uplands of this area. The geographical distribution of mitochondrial haplotypes and the results of DIVA and coalescent analyses suggest that there has been extensive secondary contact between these lineages indicating a complex history of connectivity between these western and eastern highlands, supporting the predictions of the DV hypothesis. [source] Refugia, differentiation and postglacial migration in arctic-alpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.)MOLECULAR ECOLOGY, Issue 7 2006INGER SKREDE Abstract Many arctic-alpine organisms have vast present-day ranges across Eurasia, but their history of refugial isolation, differentiation and postglacial expansion is poorly understood. The mountain avens, Dryas octopetala sensu lato, is a long-lived, wind-dispersed, diploid shrub forming one of the most important components of Eurasian tundras and heaths in terms of biomass. We address differentiation and migration history of the species with emphasis on the western and northern Eurasian parts of its distribution area, also including some East Greenlandic and North American populations (partly referred to as the closely related D. integrifolia M. Vahl). We analysed 459 plants from 52 populations for 155 amplified fragment length polymorphisms (AFLP) markers. The Eurasian plants were separated into two main groups, probably reflecting isolation and expansion from two major glacial refugia, situated south and east of the North European ice sheets, respectively. Virtually all of northwestern Europe as well as East Greenland have been colonized by the Southern lineage, whereas northwest Russia, the Tatra Mountains and the arctic archipelago of Svalbard have been colonized by the Eastern lineage. The data indicate a contact zone between the two lineages in northern Scandinavia and possibly in the Tatra Mountains. The two single populations analysed from the Caucasus and Altai Mountains were most closely related to the Eastern lineage but were strongly divergent from the remaining eastern populations, suggesting survival in separate refugia at least during the last glaciation. The North American populations grouped with those from East Greenland, irrespective of their taxonomic affiliation, but this may be caused by independent hybridization with D. integrifolia and therefore not reflect the true relationship between populations from these areas. [source] |