Home About us Contact | |||
Semiparametric Mixed Models (semiparametric + mixed_models)
Selected AbstractsBayesian Inference in Semiparametric Mixed Models for Longitudinal DataBIOMETRICS, Issue 1 2010Yisheng Li Summary We consider Bayesian inference in semiparametric mixed models (SPMMs) for longitudinal data. SPMMs are a class of models that use a nonparametric function to model a time effect, a parametric function to model other covariate effects, and parametric or nonparametric random effects to account for the within-subject correlation. We model the nonparametric function using a Bayesian formulation of a cubic smoothing spline, and the random effect distribution using a normal distribution and alternatively a nonparametric Dirichlet process (DP) prior. When the random effect distribution is assumed to be normal, we propose a uniform shrinkage prior (USP) for the variance components and the smoothing parameter. When the random effect distribution is modeled nonparametrically, we use a DP prior with a normal base measure and propose a USP for the hyperparameters of the DP base measure. We argue that the commonly assumed DP prior implies a nonzero mean of the random effect distribution, even when a base measure with mean zero is specified. This implies weak identifiability for the fixed effects, and can therefore lead to biased estimators and poor inference for the regression coefficients and the spline estimator of the nonparametric function. We propose an adjustment using a postprocessing technique. We show that under mild conditions the posterior is proper under the proposed USP, a flat prior for the fixed effect parameters, and an improper prior for the residual variance. We illustrate the proposed approach using a longitudinal hormone dataset, and carry out extensive simulation studies to compare its finite sample performance with existing methods. [source] Variable Selection for Semiparametric Mixed Models in Longitudinal StudiesBIOMETRICS, Issue 1 2010Xiao Ni Summary We propose a double-penalized likelihood approach for simultaneous model selection and estimation in semiparametric mixed models for longitudinal data. Two types of penalties are jointly imposed on the ordinary log-likelihood: the roughness penalty on the nonparametric baseline function and a nonconcave shrinkage penalty on linear coefficients to achieve model sparsity. Compared to existing estimation equation based approaches, our procedure provides valid inference for data with missing at random, and will be more efficient if the specified model is correct. Another advantage of the new procedure is its easy computation for both regression components and variance parameters. We show that the double-penalized problem can be conveniently reformulated into a linear mixed model framework, so that existing software can be directly used to implement our method. For the purpose of model inference, we derive both frequentist and Bayesian variance estimation for estimated parametric and nonparametric components. Simulation is used to evaluate and compare the performance of our method to the existing ones. We then apply the new method to a real data set from a lactation study. [source] Influence diagnostics and outlier tests for semiparametric mixed modelsJOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES B (STATISTICAL METHODOLOGY), Issue 3 2002Wing-Kam Fung Summary. Semiparametric mixed models are useful in biometric and econometric applications, especially for longitudinal data. Maximum penalized likelihood estimators (MPLEs) have been shown to work well by Zhang and co-workers for both linear coefficients and nonparametric functions. This paper considers the role of influence diagnostics in the MPLE by extending the case deletion and subject deletion analysis of linear models to accommodate the inclusion of a nonparametric component. We focus on influence measures for the fixed effects and provide formulae that are analogous to those for simpler models and readily computable with the MPLE algorithm. We also establish an equivalence between the case or subject deletion model and a mean shift outlier model from which we derive tests for outliers. The influence diagnostics proposed are illustrated through a longitudinal hormone study on progesterone and a simulated example. [source] Modelling price paths in on-line auctions: smoothing sparse and unevenly sampled curves by using semiparametric mixed modelsJOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES C (APPLIED STATISTICS), Issue 2 2008Florian Reithinger Summary., On-line auctions pose many challenges for the empirical researcher, one of which is the effective and reliable modelling of price paths. We propose a novel way of modelling price paths in eBay's on-line auctions by using functional data analysis. One of the practical challenges is that the functional objects are sampled only very sparsely and unevenly. Most approaches rely on smoothing to recover the underlying functional object from the data, which can be difficult if the data are irregularly distributed. We present a new approach that can overcome this challenge. The approach is based on the ideas of mixed models. Specifically, we propose a semiparametric mixed model with boosting to recover the functional object. As well as being able to handle sparse and unevenly distributed data, the model also results in conceptually more meaningful functional objects. In particular, we motivate our method within the framework of eBay's on-line auctions. On-line auctions produce monotonic increasing price curves that are often correlated across auctions. The semiparametric mixed model accounts for this correlation in a parsimonious way. It also manages to capture the underlying monotonic trend in the data without imposing model constraints. Our application shows that the resulting functional objects are conceptually more appealing. Moreover, when used to forecast the outcome of an on-line auction, our approach also results in more accurate price predictions compared with standard approaches. We illustrate our model on a set of 183 closed auctions for Palm M515 personal digital assistants. [source] Bayesian Inference in Semiparametric Mixed Models for Longitudinal DataBIOMETRICS, Issue 1 2010Yisheng Li Summary We consider Bayesian inference in semiparametric mixed models (SPMMs) for longitudinal data. SPMMs are a class of models that use a nonparametric function to model a time effect, a parametric function to model other covariate effects, and parametric or nonparametric random effects to account for the within-subject correlation. We model the nonparametric function using a Bayesian formulation of a cubic smoothing spline, and the random effect distribution using a normal distribution and alternatively a nonparametric Dirichlet process (DP) prior. When the random effect distribution is assumed to be normal, we propose a uniform shrinkage prior (USP) for the variance components and the smoothing parameter. When the random effect distribution is modeled nonparametrically, we use a DP prior with a normal base measure and propose a USP for the hyperparameters of the DP base measure. We argue that the commonly assumed DP prior implies a nonzero mean of the random effect distribution, even when a base measure with mean zero is specified. This implies weak identifiability for the fixed effects, and can therefore lead to biased estimators and poor inference for the regression coefficients and the spline estimator of the nonparametric function. We propose an adjustment using a postprocessing technique. We show that under mild conditions the posterior is proper under the proposed USP, a flat prior for the fixed effect parameters, and an improper prior for the residual variance. We illustrate the proposed approach using a longitudinal hormone dataset, and carry out extensive simulation studies to compare its finite sample performance with existing methods. [source] Variable Selection for Semiparametric Mixed Models in Longitudinal StudiesBIOMETRICS, Issue 1 2010Xiao Ni Summary We propose a double-penalized likelihood approach for simultaneous model selection and estimation in semiparametric mixed models for longitudinal data. Two types of penalties are jointly imposed on the ordinary log-likelihood: the roughness penalty on the nonparametric baseline function and a nonconcave shrinkage penalty on linear coefficients to achieve model sparsity. Compared to existing estimation equation based approaches, our procedure provides valid inference for data with missing at random, and will be more efficient if the specified model is correct. Another advantage of the new procedure is its easy computation for both regression components and variance parameters. We show that the double-penalized problem can be conveniently reformulated into a linear mixed model framework, so that existing software can be directly used to implement our method. For the purpose of model inference, we derive both frequentist and Bayesian variance estimation for estimated parametric and nonparametric components. Simulation is used to evaluate and compare the performance of our method to the existing ones. We then apply the new method to a real data set from a lactation study. [source] |