Home About us Contact | |||
Semi-natural Grasslands (semi-natural + grassland)
Selected AbstractsEffects of Restoration on Plant Species Richness and Composition in Scandinavian Semi-Natural GrasslandsRESTORATION ECOLOGY, Issue 3 2004Regina Lindborg Abstract Plant species richness in rural landscapes of northern Europe has been positively influenced by traditional management for millennia. Owing to abandonment of these practices, the number of species-rich semi-natural grasslands has decreased, and remaining habitats suffer from deterioration, fragmentation, and plant species decline. To prevent further extinctions, restoration efforts have increased during the last decades, by reintroducing grazing in former semi-natural grasslands. To assess the ecological factors that might influence the outcome of such restorations, we made a survey of semi-natural grasslands in Sweden that have been restored during the last decade. We investigated how plant species richness, species density, species composition, and abundance of 10 species that are indicators of grazing are affected by (1) the size of the restored site, (2) the time between abandonment of grazing and restoration, (3) the time elapsed since restoration, and (4) the abundance of trees and shrubs at the restored site. Only two factors, abundance of trees and shrubs and time since restoration, were positively associated with total species richness and species density per meter square at restored sites. Variation in species composition among restored sites was not related to any of the investigated factors. Species composition was relatively similar among sites, except in mesic/wet grasslands. The investigated factors had small effects on the abundance of the grazing-indicator species. Only Campanula rotundifolia responded to restoration with increasing abundance and may thus be a suitable indicator of improved habitat quality. In conclusion, positive effects on species richness may appear relatively soon after restoration, but rare, short-lived species are still absent. Therefore, remnant populations in surrounding areas may be important in fully recreating former species richness and composition. [source] Relationship between species richness and spatial and temporal distance from seed source in semi-natural grasslandAPPLIED VEGETATION SCIENCE, Issue 3 2010Toshikazu Matsumura Abstract Question: How do traditional management practices of field margins maintain the biodiversity of native grassland species? Location: Semi-natural grassland on the field margins of traditional and consolidated agricultural fields on Awaji Island, central Japan. Methods: The distance to the nearest traditional field margin to the study sites was determined because the traditional field was considered as a seed source of native vegetation to the semi-natural grasslands under study. We selected field margins in consolidated fields of different ages and distances from seed sources. Indicator species for both field types were sought. Regression analysis and detrended correspondence analysis (DCA) were used to determine the effect of spatial and temporal distances on the species composition of native vegetation. Results: Species richness differed significantly between the margin of traditional and consolidated fields. We identified significant indicator species of traditional fields, but not of consolidated fields. In consolidated fields, species richness increased significantly with age and decreased significantly with increasing distance to the source. At younger sites, species richness decreased faster with distance to the source because of strong negative correlation, but not at older sites. DCA ordination plots similarly indicated that similarities of vegetation composition in consolidated and traditional fields decreased with distance, and the effect of distance decreased with age. Conclusions: The species composition of the grassland margins of consolidated field was more similar to the margins of traditional fields if the consolidated fields were older, and/or closer to traditional fields. This pattern suggests that dispersal may play a role in the establishment of species on field margins. [source] Herbage mass and nutritive value of herbage of extensively managed temperate grasslands along a gradient of shrub encroachmentGRASS & FORAGE SCIENCE, Issue 3 2009S. Kesting Abstract Semi-natural grasslands often serve as important reserves of biodiversity. In Europe extensive grazing by livestock is considered an appropriate management to conserve biodiversity value and to limit shrub encroachment. However, little is known about the influence of shrubs on agronomic values. A gradient analysis of shrub-invaded temperate grasslands (from shrub-free to pioneer forest) in Germany was carried out to test the hypothesis that herbage mass and variables describing nutritive value of herbage decrease with increasing shrub encroachment. The herbage mass of dry matter (DM), variables describing the nutritive value of herbage, composition of the vegetation and mean of Ellenberg's indicator values were analysed with respect to the extent of shrubs. There was a reduction of herbage mass of DM from 3570 to 210 kg ha,1 with increasing shrub encroachment. Metabolizable energy concentration of herbage ranged from 8·9 to 10·2 MJ kg,1 DM and crude protein concentration from 72 to 171 g kg,1 DM, both measures being positively correlated with shrub occurrence. Increasing shrub occurrence was associated with a decrease in water-soluble carbohydrates concentration (from 151 to 31 g kg,1) and a reduction in the indicator ,forage value'. The results indicate a potentially large agronomic value for shrub-encroached temperate grasslands. [source] Scale-dependence of vegetation-environment relationships in semi-natural grasslandsJOURNAL OF VEGETATION SCIENCE, Issue 1 2008Inger Auestad Abstract Questions: Which environmental and management factors determine plant species composition in semi-natural grasslands within a local study area? Are vegetation and explanatory factors scale-dependent? Location: Semi-natural grasslands in Lærdal, Sognog Fjordane County, western Norway. Methods: We recorded plant species composition and explanatory variables in six grassland sites using a hierarchically nested sampling design with three levels: plots randomly placed within blocks selected within sites. We evaluated vegetation-environment relationships at all three levels by means of DCA ordination and split-plot GLM analyses. Results: The most important complex gradient determining variation in grassland species composition showed a broad-scale relationship with management. Soil moisture conditions were related to vegetation variation on block scale, whereas element concentrations in the soil were significantly related to variation in species composition on all spatial scales. Our results show that vegetation-environment relationships are dependent on the scale of observation. We suggest that scale-related (and therefore methodological) issues may explain the wide range of vegetation-environment relationships reported in the literature, for semi-natural grassland in particular but also for other ecosystems. Conclusions: Interpretation of the variation in species composition of semi-natural grasslands requires consideration of the spatial scales on which important environmental variables vary. [source] How can we preserve and restore species richness of pollinating insects on agricultural land?ECOGRAPHY, Issue 6 2008Markus Franzén During recent decades, concern about the loss of biodiversity on agricultural land has increased, and semi-natural grasslands have been highlighted as critical habitats. Temperate European agricultural landscapes require distinct and appropriate management to prevent further impoverishment of the flora and fauna. This is especially urgent for pollinating insects that provide important ecosystem services. Our aim was to examine how species richness of three important groups of pollinating insects; solitary bees, butterflies and burnet moths are related to different farm characteristics, and if there are any differences between these three groups. A further aim was to test if red-listed species are related to any farm characteristics. Species richness of solitary bees, butterflies and burnets was measured on all semi-natural grasslands at 16 farms in a forest-dominated area of 50 km2 in southern Sweden, using systematic transect walks in April to September 2003 (only butterflies and burnets) and 2005. Species richness of solitary bees and butterflies was intercorrelated, both before and after controlling for the area of semi-natural grassland. Species richness of solitary bees increased with the area of semi-natural grassland. After controlling for the effect of the area of semi-natural grassland species richness was strongly positively related with the density of the plant Knautia arvensis and negatively related with the proportion of grazed grassland. The results were similar for solitary bees and butterflies. The number of red-listed solitary bees was positively related to the proportion of meadows with late harvest (after mid-July) and decreased with increased farm isolation. The number of burnet species (all red-listed) was positively related to vegetation height, flower density and the proportion of meadows with late harvest on a farm. Areas with a high density of K. arvensis and with traditional hay-meadow with late harvest present, harbour most species. Promoting traditional hay-meadows, late extensive grazing and the herb K. arvensis, people managing agricultural biodiversity can encompass high species richness of pollinating insects and support red-listed species. Further, we suggest that the density of K. arvensis at a farm can be used as a biodiversity indicator, at least for pollinating insects. [source] Asymmetric dispersal and survival indicate population sources for grassland butterflies in agricultural landscapesECOGRAPHY, Issue 2 2007Erik Öckinger We tested the hypothesis that populations in small habitat fragments remaining in agricultural landscapes are maintained by repeated immigration, using three grassland butterflies (Aphantopus hyperantus, Coenonympha pamphilus and Maniola jurtina). Transect counts in 12 matched sets of semi-natural pastures, and linear habitat elements proximate and isolated from the pastures showed that population densities of M.,jurtina and C.,pamphilus were significantly higher in pastures and in linear habitats adjacent to these than in isolated linear elements. A mark-recapture study in a 2×2 km landscape indicated that individuals of all three species are able to reach even the isolated linear elements situated at least 1 km from the grasslands. For two of the species, A.,hyperantus and C.,pamphilus, analysis of the mark-recapture data revealed higher daily local survival rates in the semi-natural pastures and more individuals dispersing from pastures to linear habitat elements. The proportion of old compared to young individuals of C.,pamphilus and M.,jurtina were significantly higher in linear elements than in semi-natural pastures, which suggests that butterflies emerging in pastures subsequently dispersed to the linear elements. In combination, these results suggest that semi-natural pastures act as population sources, from which adult butterflies disperse to surrounding linear elements. Hence, preservation of the remaining fragments of semi-natural grassland is necessary to keep the present butterfly abundance in the surrounding agricultural landscape. [source] Estimation of net nitrogen flux between the atmosphere and a semi-natural grassland ecosystem in HungaryEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2010A. Machon The aim of this work is to estimate the net N balance (deposition , emission) between the atmosphere and a semi-arid, semi-natural grassland (Bugac station, Central Hungary, CarboEurope IP, NitroEurope IP level 3 site). Dry deposition of N compounds has been determined by the inferential method, based on continuous monitoring of NO2 gas and daily 24-hour concentration measurements of HNO3 vapour, NH3 gas, and NH4+ and NO3, particles, using dry deposition velocities from the literature, measured above surfaces with the same characteristics as Bugac station. The bi-directional flux of NH3 within the atmosphere and the canopy (excluding soil emission) has also been estimated by the inferential method. Wet deposition of nitrate and ammonium ions was calculated on the basis of daily precipitation sampling and concentration measurements of nitrate and ammonium ions. To estimate the soil-atmosphere exchange of different gaseous N forms (N2, NO, N2O, NH3), the DNDC model was used as validated by the chamber measurements of NO and N2O soil emission fluxes. Soil emissions of NO and N2O have been determined by dynamic and static soil chamber methods, respectively. The measurement and modelling activity covers a complete year. Using the measured and modelled data, the calculated N balance at Bugac station between August 2006 and July 2007 is estimated at ,8.8 kg N ha,1 year,1 (deposition) as a sum of the deposition and emission terms (,10.4 and 1.6 kg N ha,1 year,1, respectively). Due to the warm and dry weather during the examined period, wet fluxes were substantially lower than usual, which may also have altered the regular yearly course of dry deposition and emission. [source] Utilization of semi-natural grassland through integrated generation of solid fuel and biogas from biomass.GRASS & FORAGE SCIENCE, Issue 4 2009Abstract A procedure (Integrated Generation of Solid Fuel and Biogas from Biomass, IFBB) was developed which uses a screw press to separate the readily digestible constituents of mature grassland biomass into a press fluid for conversion into biogas and a fibrous press cake for processing into a solid fuel. Effects of mechanical dehydration and prior hydrothermal conditioning at different temperatures (5, 60 and 80°C) on concentrations of organic compounds in the press fluid and on methane production in batch experiments were evaluated for five semi-natural grasslands typical of mountain areas of Germany. Results show that the crude protein concentration of the press fluids was higher and crude fibre concentration was lower than that of the parent material (herbage conserved as silage). Digestion tests in batch fermenters showed that the methane yield of the press fluids was double [397,426 normal litre (NL) kg,1 volatile solids (VS) after 13 d] that of the whole-crop grassland silage (218 NL kg,1 VS after 27 d) but no consistent effect of higher temperature during conditioning was observed. Within 13 d of fermentation the decomposition of the organic matter (OM) that occurred in the press fluids was 0·90, whereas after 27 d of fermentation more than 0·40 of the OM remained undigested in the whole-crop silage, pointing at a marked reduction in retention time for anaerobic digestion of press fluids in continuous systems. Press fluids produced 0·90 of the maximum methane yield after 4 to 7 d compared with 19 days for the whole-crop silage. [source] Scale-dependence of vegetation-environment relationships in semi-natural grasslandsJOURNAL OF VEGETATION SCIENCE, Issue 1 2008Inger Auestad Abstract Questions: Which environmental and management factors determine plant species composition in semi-natural grasslands within a local study area? Are vegetation and explanatory factors scale-dependent? Location: Semi-natural grasslands in Lærdal, Sognog Fjordane County, western Norway. Methods: We recorded plant species composition and explanatory variables in six grassland sites using a hierarchically nested sampling design with three levels: plots randomly placed within blocks selected within sites. We evaluated vegetation-environment relationships at all three levels by means of DCA ordination and split-plot GLM analyses. Results: The most important complex gradient determining variation in grassland species composition showed a broad-scale relationship with management. Soil moisture conditions were related to vegetation variation on block scale, whereas element concentrations in the soil were significantly related to variation in species composition on all spatial scales. Our results show that vegetation-environment relationships are dependent on the scale of observation. We suggest that scale-related (and therefore methodological) issues may explain the wide range of vegetation-environment relationships reported in the literature, for semi-natural grassland in particular but also for other ecosystems. Conclusions: Interpretation of the variation in species composition of semi-natural grasslands requires consideration of the spatial scales on which important environmental variables vary. [source] Plant traits and functional types in response to reduced disturbance in a semi-natural grasslandJOURNAL OF VEGETATION SCIENCE, Issue 2 2005F. Louault Abstract. Question: How do functional types respond to contrasting levels of herbage use in temperate and fertile grasslands? Location: Central France (3°1'E, 45°43'N), 870 m a.s.l. Methods: Community structure and the traits of dominant plant species were evaluated after 12 years of contrasted grazing and mowing regimes in a grazing trial, comparing three levels of herbage use (high, medium and low). Results and Conclusions: Of 22 measured traits (including leaf traits, shoot morphology and composition, phenology), seven were significantly affected by the herbage use treatment. A decline in herbage use reduced individual leaf mass, specific leaf area and shoot digestibility, but increased leaf C and dry matter contents. Plants were taller, produced larger seeds and flowered later under low than high herbage use. Nine plant functional response types were identified by multivariate optimization analysis; they were based on four optimal traits: leaf dry matter content, individual leaf area, mature plant height and time of flowering. In the high-use plots, two short and early flowering types were co-dominant, one competitive, grazing-tolerant and moderately grazing-avoiding, and one grazing-avoiding but not -tolerant. Low-use plots were dominated by one type, neither hardly grazing-avoiding nor grazing-tolerant, but strongly competitive for light. [source] Floristic composition of a Swedish semi-natural grassland during six years of elevated atmospheric CO2JOURNAL OF VEGETATION SCIENCE, Issue 5 2002Mark Marissink Krok & Almquist (2001) Abstract. A semi-natural grassland in Sweden was exposed to an elevated CO2 concentration during a six-year open-top chamber experiment. Vegetation composition was assessed twice a year using the point-intercept method. The field had been grazed previously, but when the experiment started this was replaced with a cutting regime with one cut (down to ground level) each year in early August. From the third to the sixth year of the study the harvested material was divided into legumes, non-leguminous forbs and grasses, dried and weighed. Elevated CO2 had an effect on species composition (as analysed by Principal Component Analysis) that increased over time. It also tended to increase diversity (Shannon index) in summer, but reduce it in spring. However, the effects of the weather and/or time on species composition and diversity were much more prominent than CO2 effects. Since the weather was largely directional over time (from dry to wet), with the exception of the fifth year, it was difficult to distinguish between weather effects and changes caused by a changed management regime. In all treatments, grasses increased over time in both mass and point-intercept measurements, whereas non-leguminous forbs decreased in mass, but not in point-intercept measurements. Legumes increased in the point-intercept measurements, but not in biomass, at elevated CO2, but not in the other treatments. Overall, we found that elevated CO2 affected species composition; however, it was only one of many factors and a rather weak one. [source] Land use history and site location are more important for grassland species richness than local soil propertiesNORDIC JOURNAL OF BOTANY, Issue 6 2009Sara A. O. Cousins Lately there has been a shift in Sweden from grazing species-rich semi-natural grasslands towards grazing ex-arable fields in the modern agricultural landscape. Grazing ex-arable fields contain a fraction of the plant species richness confined to semi-natural grasslands. Still, they have been suggested as potential target sites for re-creation of semi-natural grasslands. We asked to what extent does fine-scale variation in soil conditions, management history and site location effect local plant diversity in grazed ex-arable fields. We examined local soil conditions such as texture, pH, organic carbon, nitrogen (N) and extractable phosphate (P) and effects on plant richness in ten pairs of grazed ex-fields and neighbouring semi-natural grasslands in different rural landscapes. Each grassland pair where in the same paddock. A multivariate test showed that site location and land use history explained more of differences in species richness than local soil property variables. Plant species richness was positively associated to grazed ex-fields with low pH, low N and P levels. Sites with high plant richness in semi-natural grasslands also had more species in the adjacent grazed ex-fields, compared to sites neighbouring less species-rich semi-natural grasslands. Although both soil properties and species richness were different in grazed ex-fields compared to semi-natural grassland, the site location within a landscape, and vicinity to species-rich grasslands, can override effects of soil properties. In conclusion, if properly located, ex-arable fields may be an important habitat to maintain plant diversity at larger spatio-temporal scales and should considered as potential sites for grassland restoration. [source] Relationship between species richness and spatial and temporal distance from seed source in semi-natural grasslandAPPLIED VEGETATION SCIENCE, Issue 3 2010Toshikazu Matsumura Abstract Question: How do traditional management practices of field margins maintain the biodiversity of native grassland species? Location: Semi-natural grassland on the field margins of traditional and consolidated agricultural fields on Awaji Island, central Japan. Methods: The distance to the nearest traditional field margin to the study sites was determined because the traditional field was considered as a seed source of native vegetation to the semi-natural grasslands under study. We selected field margins in consolidated fields of different ages and distances from seed sources. Indicator species for both field types were sought. Regression analysis and detrended correspondence analysis (DCA) were used to determine the effect of spatial and temporal distances on the species composition of native vegetation. Results: Species richness differed significantly between the margin of traditional and consolidated fields. We identified significant indicator species of traditional fields, but not of consolidated fields. In consolidated fields, species richness increased significantly with age and decreased significantly with increasing distance to the source. At younger sites, species richness decreased faster with distance to the source because of strong negative correlation, but not at older sites. DCA ordination plots similarly indicated that similarities of vegetation composition in consolidated and traditional fields decreased with distance, and the effect of distance decreased with age. Conclusions: The species composition of the grassland margins of consolidated field was more similar to the margins of traditional fields if the consolidated fields were older, and/or closer to traditional fields. This pattern suggests that dispersal may play a role in the establishment of species on field margins. [source] Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application in the Rengen Grassland Experiment, GermanyAPPLIED VEGETATION SCIENCE, Issue 2 2009Milan Chytrý Abstract Question: How does semi-natural grassland diversify after 65 years of differential application of Ca, N, P, and K fertilizers? Is fertilizer application adequately reflected by the Ellenberg indicator values (EIVs)? Location: Eifel Mountains, West Germany. Methods: The Rengen Grassland Experiment (RGE) was established in an oligotrophic grassland in 1941. Six fertilizer treatments (Ca, CaN, CaNP, CaNP-KCl, CaNP-K2SO4, and unfertilized control) were applied annually in five complete randomized blocks. Species composition of experimental plots was sampled in 2006 and compared with constancy tables representing grassland types in a phytosociological monograph of a wider area. Each plot was matched to the most similar community type using the Associa method. Mean EIVs were calculated for each treatment. Results: The control plots supported oligotrophic Nardus grassland of the Polygalo-Nardetum association (Violion caninae alliance). Vegetation in the Ca and CaN treatments mostly resembled montane meadow of Geranio-Trisetetum (Polygono-Trisetion). Transitional types between Poo-Trisetetum and Arrhenatheretum (both from the Arrhenatherion alliance) developed in the CaNP treatment. In the CaNP-KCl and CaNP-K2SO4 treatments, vegetation corresponded to the mesotrophic Arrhenatheretum meadow. Major discontinuity in species composition was found between control, Ca, and CaN treatments, and all treatments with P application. EIVs for both nutrients and soil reaction were considerably higher in P treatments than in Ca and CaN treatments. Surprisingly, the control plots had the lowest EIVs for continentality and moisture, although these factors had not been manipulated in the experiment. Conclusions: Long-term fertilizer application can create different plant communities belonging to different phytosociological alliances and classes, even within a distance of a few meters. Due to their correlated nature, EIVs can erroneously indicate changes in factors that actually did not change, but co-varied with factors that did change. In P-limited ecosystems, EIVs for nutrients may indicate availability of P rather than N. [source] Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlandsAPPLIED VEGETATION SCIENCE, Issue 2 2006Harry Olde Venterink Abstract Questions: Various floodplain communities may differ in their relative abilities to influence water quality through nutrient retention and denitrification. Our main questions were: (1) what is the importance of sediment deposition and denitrification for plant productivity and nutrient retention in floodplains; (2) will rehabilitation of natural floodplain communities (semi-natural grassland, reedbed, woodland, pond) from agricultural grassland affect nutrient retention? Location: Floodplains of two Rhine distributaries (rivers Ussel and Waal), The Netherlands. Methods: Net sedimentation was measured using mats, denitrification in soil cores by acetylene inhibition and bio-mass production by clipping above-ground vegetation in winter and summer. Results: Sediment deposition was a major source of N and P in all floodplain communities. Highest deposition rates were found where water velocity was reduced by vegetation structure (reedbeds) or by a drop in surface elevation (pond). Sediment deposition was not higher in woodlands than in grassland types. Denitrification rates were low in winter but significantly higher in summer. Highest denitrification rates were found in an agricultural grassland (winter and summer) and in the ponds (summer). Plant productivity and nutrient uptake were high in reedbeds, intermediate in agricultural grasslands, ponds and semi-natural grasslands and very low in woodlands (only understorey). All wetlands were N-limited, which could be explained by low N:P ratios in sediment. Conclusions: Considering Rhine water quality: only substantial P-retention is expected because, relative to the annual nutrient loads in the river, the floodplains are important sinks for P, but much less for N. Rehabilitation of agricultural grasslands into ponds or reedbeds will probably be more beneficial for downstream water quality (lower P-concentrations) than into woodlands or semi-natural grasslands. [source] Changes of traditional agrarian landscapes and their conservation implications: a case study of butterflies in RomaniaDIVERSITY AND DISTRIBUTIONS, Issue 6 2007Thomas Schmitt ABSTRACT Global biodiversity is decreasing as a result of human activities. In many parts of the world, this decrease is due to the destruction of natural habitats. The European perspective is different. Here, traditional agricultural landscapes developed into species-rich habitats. However, the European biodiversity heritage is strongly endangered. One of the countries where this biodiversity is best preserved is Romania. We analyse the possible changes in Romania's land-use patterns and their possible benefits and hazards with respect to biodiversity. As model group, we used butterflies, whose habitat requirements are well understood. We determined the ecological importance of different land-use types for the conservation of butterflies, underlining the special importance of Romania's semi-natural grasslands for nature conservation. We found that increasing modern agriculture and abandonment of less productive sites both affect biodiversity negatively , the former immediately and the latter after a lag phase of several years. These perspectives are discussed in the light of the integration of Romania into the European Union. [source] Size-related deterioration of semi-natural grassland fragments in SwedenDIVERSITY AND DISTRIBUTIONS, Issue 1 2002Katariina Kiviniemi Abstract. One of the most dramatic landscape changes during the 20th century in Sweden, like in most of Europe, has been the reduction and fragmentation of semi-natural grasslands. Using a set of remnant semi-natural grasslands, chosen to be as similar as possible, but differing in size, we have examined whether size of remnant fragments of traditionally managed semi-natural grasslands in Sweden is related to patterns of species richness and composition. We focused on edge-to-interior relationships, since we expected that a possible impact from invasive habitat generalists would be manifested in a gradient from the edge of fragments to their interior. We found no relationship between size of grassland fragments and (a) overall species richness, (b) species richness at different spatial scales, and (c) abundance of some typical invader species or species characteristic of semi-natural grasslands. However, the results indicated that larger grasslands have a comparatively larger number of species in the edges, whereas the opposite pattern was found in smaller grasslands. The similarity in species composition between the edge and the interior of the pastures also increased with grassland size. Thus, even though the overall species richness is still unaffected by reduction in grassland fragment size, the edges of smaller grasslands show signs of degradation, i.e. reduction in species richness and a decreased similarity to the grassland interior. We suggest that these kinds of effects may be early signs of fragmentation effects that in the future will result in species loss even if the present distribution of semi-natural grasslands is maintained. [source] How can we preserve and restore species richness of pollinating insects on agricultural land?ECOGRAPHY, Issue 6 2008Markus Franzén During recent decades, concern about the loss of biodiversity on agricultural land has increased, and semi-natural grasslands have been highlighted as critical habitats. Temperate European agricultural landscapes require distinct and appropriate management to prevent further impoverishment of the flora and fauna. This is especially urgent for pollinating insects that provide important ecosystem services. Our aim was to examine how species richness of three important groups of pollinating insects; solitary bees, butterflies and burnet moths are related to different farm characteristics, and if there are any differences between these three groups. A further aim was to test if red-listed species are related to any farm characteristics. Species richness of solitary bees, butterflies and burnets was measured on all semi-natural grasslands at 16 farms in a forest-dominated area of 50 km2 in southern Sweden, using systematic transect walks in April to September 2003 (only butterflies and burnets) and 2005. Species richness of solitary bees and butterflies was intercorrelated, both before and after controlling for the area of semi-natural grassland. Species richness of solitary bees increased with the area of semi-natural grassland. After controlling for the effect of the area of semi-natural grassland species richness was strongly positively related with the density of the plant Knautia arvensis and negatively related with the proportion of grazed grassland. The results were similar for solitary bees and butterflies. The number of red-listed solitary bees was positively related to the proportion of meadows with late harvest (after mid-July) and decreased with increased farm isolation. The number of burnet species (all red-listed) was positively related to vegetation height, flower density and the proportion of meadows with late harvest on a farm. Areas with a high density of K. arvensis and with traditional hay-meadow with late harvest present, harbour most species. Promoting traditional hay-meadows, late extensive grazing and the herb K. arvensis, people managing agricultural biodiversity can encompass high species richness of pollinating insects and support red-listed species. Further, we suggest that the density of K. arvensis at a farm can be used as a biodiversity indicator, at least for pollinating insects. [source] Litter species composition influences the performance of seedlings of grassland herbsFUNCTIONAL ECOLOGY, Issue 3 2006H. QUESTED Summary 1This study examines the impacts of plant litter species identity and the composition of litter mixtures on seedling recruitment in the context of land-use change (abandonment) in conservationally important southern Swedish semi-natural grasslands. 2We found that plant litter had marked positive effects on the seedling recruitment of two common grassland species, and that these effects varied strongly with the species identity of the litter. 3There was no consistent evidence that litters of species typical of earlier succession had a greater positive impact on recruitment than those typical of late succession. 4The impact of mixtures of the five litter types examined was generally as expected based on the impacts of single-species litters and their contribution to the litter mixture, as predicted by the biomass ratio hypothesis. However, this was not the case for all litter and seedling species combinations, and some interactions were evident. 5Species identity of litter is important even in multispecies litter mixtures. Changes in plant species dominance (and hence the proportions of litter of different species), as a result of shifts in land use, are likely to result in changes in seedling performance, with potential consequences for the persistence of plant populations in former semi-natural grasslands. [source] Seasonal nitrogen storage and remobilization in the forb Rumex acetosaFUNCTIONAL ECOLOGY, Issue 3 2001U. Bausenwein Summary 1,The contribution of N storage and remobilization to the vegetative and reproductive growth of the forb Rumex acetosa was quantified using 15N labelling techniques with plants derived from semi-natural grasslands in Scotland. 2,The contribution of remobilized N to the total N in the new above-ground tissues was highest at the beginning of the growing season at 58%. New leaves and reproductive organs contained equal amounts of remobilized N. 3,During early vegetative growth, the taproot was the main source of remobilized N, whereas during reproductive growth, N was additionally remobilized from fine roots and leaves. 4,Free amino acids (mainly arginine and glutamine) and proteins were identified as the main storage compounds in the taproots. The protein pool did not show any seasonal variations that indicated the existence of a vegetative storage protein, indicating that such proteins are not a necessary component of N storage/remobilization in all species. 5,The ability to store and remobilize N provides a mechanism for growth in the spring when the availability of soil N is low, and means that growth depends upon environmental conditions during more than one year. [source] Shrub effects on herbs and grasses in semi-natural grasslands: positive, negative or neutral relationships?GRASS & FORAGE SCIENCE, Issue 1 2008A. Pihlgren Abstract The present study investigated how the abundance and sexual reproduction of herbs and grasses relates to the presence of shrubs of Rosa dumalis in three semi-natural pastures in Sweden. Shrubs may affect grassland plants negatively by competition, positively by serving as grazing refuge, or neutrally. At different distances from shrubs of R. dumalis, data were collected on plant abundance, frequency of reproductive shoots, vegetation height and litter depth. In one grassland, data were collected on seedling density and frequency of reproductive shoots in the presence and absence of grazing. The shrubs functioned as grazing refuges with taller vegetation, deeper litter and higher probability of reproduction by plants. The overall number of plant species remained the same at all distances from shrubs. Most species showed a neutral relationship with shrubs. Proportionately, 0·08,0·26 of the species showed a negative pattern to shrubs and 0·14,0·30 a positive pattern. Seedling density was negatively correlated with litter depth and peaked at 60,90 cm from shrubs. Establishment of seedlings of small-seeded species was negatively related to shrubs probably because of thicker litter layer close to shrubs. The observed patterns were compared with different functional traits, such as Ellenberg values, plant height, growth form and Raunkiaer life form. Plant height from data in the literature was the trait that best explained the relationship of plant species to shrubs because tall species were more common in proximity to shrubs. It was concluded that shrubs increase the heterogeneity in grasslands and that intensive shrub-clearing may negatively affect biodiversity. [source] Grassland diversity related to the Late Iron Age human population densityJOURNAL OF ECOLOGY, Issue 3 2007MEELIS PÄRTEL Summary 1Species-rich semi-natural grasslands in Europe developed during prehistoric times and have endured due to human activity. At the same time, intensive grassland management or changes in land use may result in species extinction. As a consequence, plant diversity in semi-natural calcareous grasslands may be related to both historical and current human population density. 2We hypothesize that current vascular plant diversity in semi-natural calcareous grasslands is positively correlated with the Late Iron Age (c. 800,1000 years ago) density of human settlements (indicated by Late Iron Age fortresses and villages) due to enhancement of grassland extent and species dispersal, and negatively correlated with current human population density due to habitat loss and deterioration. 3We described the size of the community vascular plant species pool, species richness per 1 m2 and the relative richness (richness divided by the size of the species pool) in 45 thin soil, calcareous (alvar) grasslands in Estonia. In addition to historical and current human population density we considered simultaneously the effects of grassland area, connectivity to other alvar grasslands, elevation above sea level (indicating grassland age), soil pH, soil N, soil P, soil depth, soil depth heterogeneity, geographical east,west gradient, precipitation and spatial autocorrelation. 4Both the size of the community species pool and the species richness are significantly correlated with the Late Iron Age human population density. In addition, species richness was unimodally related to the current human population density. The relative richness (species ,packing density') was highest in the intermediate current human population densities, indicative of moderate land-use intensity. 5Community species pool size decreased non-linearly with increasing soil N, and was highest at intermediate elevation. Small-scale richness was greater when sites were well connected and when the elevation was intermediate. Spatial autocorrelation was also significant for both species pool size and small-scale richness. 6In summary, human land-use legacy from prehistoric times is an important aspect in plant ecology, which could be an important contributor to the current variation in biodiversity. [source] Influence of slope and aspect on long-term vegetation change in British chalk grasslandsJOURNAL OF ECOLOGY, Issue 2 2006JONATHAN BENNIE Summary 1,The species composition of fragmented semi-natural grasslands may change over time due to stochastic local extinction and colonization events, successional change and/or as a response to changing management or abiotic conditions. The resistance of vegetation to change may be mediated through the effects of topography (slope and aspect) on soils and microclimate. 2,To assess long-term vegetation change in British chalk grasslands, 92 plots first surveyed by F. H. Perring in 1952,53, and distributed across four climatic regions, were re-surveyed during 2001,03. Changes in vegetation since the original survey were assessed by comparing local colonization and extinction rates at the plot scale, and changes in species frequency at the subplot scale. Vegetation change was quantified using indirect ordination (Detrended Correspondence Analysis; DCA) and Ellenberg indicator values. 3,Across all four regions, there was a significant decrease in species number and a marked decline in stress-tolerant species typical of species-rich calcareous grasslands, both in terms of decreased plot occupancy and decreased frequency within occupied plots. More competitive species typical of mesotrophic grasslands had colonized plots they had not previously occupied, but had not increased significantly in frequency within occupied plots. 4,A significant increase in Ellenberg fertility values, which was highly correlated with the first DCA axis, was found across all regions. The magnitude of change of fertility and moisture values was found to decrease with angle of slope and with a topographic solar radiation index derived from slope and aspect. 5,The observed shift from calcareous grassland towards more mesotrophic grassland communities is consistent with the predicted effects of both habitat fragmentation and nutrient enrichment. It is hypothesized that chalk grassland swards on steeply sloping ground are more resistant to invasion by competitive grass species than those on flatter sites due to phosphorus limitation in shallow minerogenic rendzina soils, and that those with a southerly aspect are more resistant due to increased magnitude and frequency of drought events. [source] Habitat fragmentation reduces grassland connectivity for both short-distance and long-distance wind-dispersed forbsJOURNAL OF ECOLOGY, Issue 6 2005M. B. SOONS Summary 1Although habitat loss and fragmentation are assumed to threaten the regional survival of plant species, their effects on regional species dynamics via seed dispersal and colonization have rarely been quantified. 2We assessed the impact of habitat loss and fragmentation on the connectivity, and hence regional survival, of wind-dispersed plant species of nutrient-poor semi-natural grasslands. We did this using a new approach to relate quantified habitat loss and fragmentation to quantified colonization capacity. 3We quantified loss and fragmentation during the 20th century of moist, nutrient-poor semi-natural grasslands in study areas in the Netherlands, as well as their current distribution. After testing how well the habitat distribution matches species distributions of two wind-dispersed grassland forbs (Cirsium dissectum, representative of species with long-distance wind dispersal, and Succisa pratensis, representative of species with short-distance wind dispersal), we combined the habitat distribution data with simulated seed dispersal kernels in order to quantify the impact on connectivity. 4Habitat loss and fragmentation has dramatically reduced both the area (by 99.8%) and the connectivity of the grasslands. The remaining grasslands are practically isolated for seeds dispersed by wind, even for species with high wind dispersal ability (for which, interestingly, connectivity by wind dispersal decreased most). Linear landscape elements hardly contribute to connectivity by wind dispersal. Regional survival of the studied species has become completely dependent on the survival of a few large populations in nature reserves. Other remaining populations are decreasing in number and size and have low colonization capacity. 5Habitat loss and fragmentation have drastically changed the regional species dynamics of wind-dispersed plant species, indicating that it is of utmost importance to preserve remaining populations in nature reserves and that the probability of colonization of new or restored sites is very low, unless the sites are adjacent to occupied sites or dispersal is artificially assisted. [source] Demographic variation and population viability in Gentianella campestris: effects of grassland management and environmental stochasticityJOURNAL OF ECOLOGY, Issue 3 2001Tommy Lennartsson Summary 1,Transition matrix models were used to evaluate the effects of environmental stochasticity and four different methods of grassland management on dynamics and viability of a population of the biennial Gentianella campestris (Gentianaceae) in species-rich grassland. Data were collected between 1990 and 1995. 2,Continuous summer grazing, the prevailing management strategy in Scandinavian grasslands, resulted in high recruitment of new plants, mainly because litter accumulation was prevented and gaps were created by trampling. Trampling and repeated grazing, however, caused damage which reduced seed production. Lambda for the average matrix was c. 0.77, and a stochastic matrix model yielded an extinction probability for the total population of c. 0.08 within 50 years. 3,Mowing in mid-July (used as a conservation tool) increased seed production, but litter accumulation following re-growth of the vegetation prevented establishment. Lambda and extinction risk were similar to continuous grazing. 4,Mowing in October (another conservation tool) promoted recruitment because of low litter accumulation, but the seed output decreased because plant growth was impaired by tall vegetation. Lambda was 0.64, while the extinction probability was very high (c. 0.98 within 50 years). 5,Mid-July mowing followed by autumn grazing (the historical management regime) yielded high values for both seed production and establishment of rosettes. Lambda was 0.94 and the probability of extinction within 50 years was below detection level. 6,Log-linear analysis showed that the matrices differed significantly both between treatments and between years. The latter indicates environmental stochasticity, here caused by summer drought that increased the extinction risk. Lambda may be slightly underestimated because drought occurred in one out of five summers during the study period, which is high compared with the natural frequency. 7,We conclude that traditional grassland management is more favourable for G. campestris than the methods that prevail in Scandinavia today. This indicates a serious conservation problem, because grazing has replaced traditional management in many of the remaining semi-natural grasslands throughout Europe. [source] Substitutes for grazing in semi-natural grasslands , do mowing or mulching represent valuable alternatives to maintain vegetation structure?JOURNAL OF VEGETATION SCIENCE, Issue 6 2009Christine Römermann Abstract Question: Which management treatments are suitable to replace historically applied grazing regimes? How and why does vegetation structure change following changes in management? Location: Semi-natural calcareous dry grasslands in southwest Germany. Methods: We analysed changes in floristic and functional composition induced by different management treatments (grazing, mowing, mulching, succession) in long-term experimental sites. First, floristic and functional distances between the initial conditions and the following years were determined. Second, we used RLQ analyses to include data on abiotic conditions, vegetation composition and functional traits in one common analysis. Finally, we applied cluster analyses on RLQ species scores to deduce functional groups. Results: In contrast to the historical management regime of grazing, all alternative management treatments led to changes in floristic and functional composition, depending on their intensity with respect to biomass removal. The distance analyses showed that mulching twice per year and mowing did not lead to strong changes in floristic or functional composition. However, RLQ analysis clearly provided evidence that only the grazed sites are in equilibrium, indicating that vegetation change still goes ahead. Conclusions: The current study clearly shows that RLQ is a powerful tool to elucidate ongoing processes that may remain hidden when separately analysing floristic and functional data. Alternative management treatments are not appropriate to sustain the typical disturbance dynamics of species-rich semi-natural grasslands. The less frequent an alternative management treatment is with respect to biomass removal, the less the floristic and functional structure can be maintained. [source] Scale-dependence of vegetation-environment relationships in semi-natural grasslandsJOURNAL OF VEGETATION SCIENCE, Issue 1 2008Inger Auestad Abstract Questions: Which environmental and management factors determine plant species composition in semi-natural grasslands within a local study area? Are vegetation and explanatory factors scale-dependent? Location: Semi-natural grasslands in Lærdal, Sognog Fjordane County, western Norway. Methods: We recorded plant species composition and explanatory variables in six grassland sites using a hierarchically nested sampling design with three levels: plots randomly placed within blocks selected within sites. We evaluated vegetation-environment relationships at all three levels by means of DCA ordination and split-plot GLM analyses. Results: The most important complex gradient determining variation in grassland species composition showed a broad-scale relationship with management. Soil moisture conditions were related to vegetation variation on block scale, whereas element concentrations in the soil were significantly related to variation in species composition on all spatial scales. Our results show that vegetation-environment relationships are dependent on the scale of observation. We suggest that scale-related (and therefore methodological) issues may explain the wide range of vegetation-environment relationships reported in the literature, for semi-natural grassland in particular but also for other ecosystems. Conclusions: Interpretation of the variation in species composition of semi-natural grasslands requires consideration of the spatial scales on which important environmental variables vary. [source] Land use history and site location are more important for grassland species richness than local soil propertiesNORDIC JOURNAL OF BOTANY, Issue 6 2009Sara A. O. Cousins Lately there has been a shift in Sweden from grazing species-rich semi-natural grasslands towards grazing ex-arable fields in the modern agricultural landscape. Grazing ex-arable fields contain a fraction of the plant species richness confined to semi-natural grasslands. Still, they have been suggested as potential target sites for re-creation of semi-natural grasslands. We asked to what extent does fine-scale variation in soil conditions, management history and site location effect local plant diversity in grazed ex-arable fields. We examined local soil conditions such as texture, pH, organic carbon, nitrogen (N) and extractable phosphate (P) and effects on plant richness in ten pairs of grazed ex-fields and neighbouring semi-natural grasslands in different rural landscapes. Each grassland pair where in the same paddock. A multivariate test showed that site location and land use history explained more of differences in species richness than local soil property variables. Plant species richness was positively associated to grazed ex-fields with low pH, low N and P levels. Sites with high plant richness in semi-natural grasslands also had more species in the adjacent grazed ex-fields, compared to sites neighbouring less species-rich semi-natural grasslands. Although both soil properties and species richness were different in grazed ex-fields compared to semi-natural grassland, the site location within a landscape, and vicinity to species-rich grasslands, can override effects of soil properties. In conclusion, if properly located, ex-arable fields may be an important habitat to maintain plant diversity at larger spatio-temporal scales and should considered as potential sites for grassland restoration. [source] Effects of Restoration on Plant Species Richness and Composition in Scandinavian Semi-Natural GrasslandsRESTORATION ECOLOGY, Issue 3 2004Regina Lindborg Abstract Plant species richness in rural landscapes of northern Europe has been positively influenced by traditional management for millennia. Owing to abandonment of these practices, the number of species-rich semi-natural grasslands has decreased, and remaining habitats suffer from deterioration, fragmentation, and plant species decline. To prevent further extinctions, restoration efforts have increased during the last decades, by reintroducing grazing in former semi-natural grasslands. To assess the ecological factors that might influence the outcome of such restorations, we made a survey of semi-natural grasslands in Sweden that have been restored during the last decade. We investigated how plant species richness, species density, species composition, and abundance of 10 species that are indicators of grazing are affected by (1) the size of the restored site, (2) the time between abandonment of grazing and restoration, (3) the time elapsed since restoration, and (4) the abundance of trees and shrubs at the restored site. Only two factors, abundance of trees and shrubs and time since restoration, were positively associated with total species richness and species density per meter square at restored sites. Variation in species composition among restored sites was not related to any of the investigated factors. Species composition was relatively similar among sites, except in mesic/wet grasslands. The investigated factors had small effects on the abundance of the grazing-indicator species. Only Campanula rotundifolia responded to restoration with increasing abundance and may thus be a suitable indicator of improved habitat quality. In conclusion, positive effects on species richness may appear relatively soon after restoration, but rare, short-lived species are still absent. Therefore, remnant populations in surrounding areas may be important in fully recreating former species richness and composition. [source] Relationship between species richness and spatial and temporal distance from seed source in semi-natural grasslandAPPLIED VEGETATION SCIENCE, Issue 3 2010Toshikazu Matsumura Abstract Question: How do traditional management practices of field margins maintain the biodiversity of native grassland species? Location: Semi-natural grassland on the field margins of traditional and consolidated agricultural fields on Awaji Island, central Japan. Methods: The distance to the nearest traditional field margin to the study sites was determined because the traditional field was considered as a seed source of native vegetation to the semi-natural grasslands under study. We selected field margins in consolidated fields of different ages and distances from seed sources. Indicator species for both field types were sought. Regression analysis and detrended correspondence analysis (DCA) were used to determine the effect of spatial and temporal distances on the species composition of native vegetation. Results: Species richness differed significantly between the margin of traditional and consolidated fields. We identified significant indicator species of traditional fields, but not of consolidated fields. In consolidated fields, species richness increased significantly with age and decreased significantly with increasing distance to the source. At younger sites, species richness decreased faster with distance to the source because of strong negative correlation, but not at older sites. DCA ordination plots similarly indicated that similarities of vegetation composition in consolidated and traditional fields decreased with distance, and the effect of distance decreased with age. Conclusions: The species composition of the grassland margins of consolidated field was more similar to the margins of traditional fields if the consolidated fields were older, and/or closer to traditional fields. This pattern suggests that dispersal may play a role in the establishment of species on field margins. [source] |