Semiarid Regions (semiarid + regions)

Distribution by Scientific Domains


Selected Abstracts


Limits of life in hostile environments: no barriers to biosphere function?

ENVIRONMENTAL MICROBIOLOGY, Issue 12 2009
Jim P. Williams
Summary Environments that are hostile to life are characterized by reduced microbial activity which results in poor soil- and plant-health, low biomass and biodiversity, and feeble ecosystem development. Whereas the functional biosphere may primarily be constrained by water activity (aw) the mechanism(s) by which this occurs have not been fully elucidated. Remarkably we found that, for diverse species of xerophilic fungi at aw values of , 0.72, water activity per se did not limit cellular function. We provide evidence that chaotropic activity determined their biotic window, and obtained mycelial growth at water activities as low as 0.647 (below that recorded for any microbial species) by addition of compounds that reduced the net chaotropicity. Unexpectedly we found that some fungi grew optimally under chaotropic conditions, providing evidence for a previously uncharacterized class of extremophilic microbes. Further studies to elucidate the way in which solute activities interact to determine the limits of life may lead to enhanced biotechnological processes, and increased productivity of agricultural and natural ecosystems in arid and semiarid regions. [source]


A Geostatistical Analysis of Soil, Vegetation, and Image Data Characterizing Land Surface Variation

GEOGRAPHICAL ANALYSIS, Issue 2 2007
Sarah E. Rodgers
The elucidation of spatial variation in the landscape can indicate potential wildlife habitats or breeding sites for vectors, such as ticks or mosquitoes, which cause a range of diseases. Information from remotely sensed data could aid the delineation of vegetation distribution on the ground in areas where local knowledge is limited. The data from digital images are often difficult to interpret because of pixel-to-pixel variation, that is, noise, and complex variation at more than one spatial scale. Landsat Thematic Mapper Plus (ETM+) and Satellite Pour l'Observation de La Terre (SPOT) image data were analyzed for an area close to Douna in Mali, West Africa. The variograms of the normalized difference vegetation index (NDVI) from both types of image data were nested. The parameters of the nested variogram function from the Landsat ETM+ data were used to design the sampling for a ground survey of soil and vegetation data. Variograms of the soil and vegetation data showed that their variation was anisotropic and their scales of variation were similar to those of NDVI from the SPOT data. The short- and long-range components of variation in the SPOT data were filtered out separately by factorial kriging. The map of the short-range component appears to represent the patterns of vegetation and associated shallow slopes and drainage channels of the tiger bush system. The map of the long-range component also appeared to relate to broader patterns in the tiger bush and to gentle undulations in the topography. The results suggest that the types of image data analyzed in this study could be used to identify areas with more moisture in semiarid regions that could support wildlife and also be potential vector breeding sites. [source]


Soil inorganic carbon storage pattern in China

GLOBAL CHANGE BIOLOGY, Issue 10 2008
NA MI
Abstract Soils with pedogenic carbonate cover about 30% (3.44 × 106 km2) of China, mainly across its arid and semiarid regions in the Northwest. Based on the second national soil survey (1979,1992), total soil inorganic carbon (SIC) storage in China was estimated to be 53.3±6.3 PgC (1 Pg=1015 g) to the depth investigated to 2 m. Soil inorganic carbon storages were 4.6, 10.6, 11.1, and 20.8 Pg for the depth ranges of 0,0.1, 0.1,0.3, 0.3,0.5, and 0.5,1 m, respectively. Stocks for 0.1, 0.3, 0.5, and 1 m of depth accounted for 8.7%, 28.7%, 49.6%, and 88.9% of total SIC, respectively. In contrast with soil organic carbon (SOC) storage, which is highest under 500,800 mm yr,1 of mean precipitation, SIC storage peaks where mean precipitation is <400 mm yr,1. The amount and vertical distribution of SIC was related to climate and land cover type. Content of SIC in each incremental horizon was positively related with mean annual temperature and negatively related with mean annual precipitation, with the magnitude of SIC content across land cover types showing the following order: desert, grassland >shrubland, cropland >marsh, forest, meadow. Densities of SIC increased generally with depth in all ecosystem types with the exception of deserts and marshes where it peaked in intermediate layers (0.1,0.3 m for first and 0.3,0.5 m for latter). Being an abundant component of soil carbon stocks in China, SIC dynamics and the process involved in its accumulation or loss from soils require a better understanding. [source]


Desertification in the Sahel: a reinterpretation of a reinterpretation

GLOBAL CHANGE BIOLOGY, Issue 7 2007
STEPHEN D. PRINCE
Abstract In semiarid regions the ratio of annual net primary production to precipitation, rain-use efficiency (RUE), has been used as an index of desertification. In a recent publication (Hein & de Ridder, 2006) it was proposed that an incorrect understanding of the relationship between RUE and rainfall has led to a misinterpretation of the satellite record of desertification in the African Sahel. Here, we examine this suggestion and show that, contrary to Hein and de Ridder's statement, satellite studies of Sahelian RUE have reported increases, decreases, and constant values since 1981. Furthermore, we find that data do not support their proposal that RUE increases with rainfall, even in nondegraded areas. Hence we reject their corollary, that constant RUE is prima facie evidence of desertification. The fundamental difficulty with the use of RUE for detection of desertification remains, that is the difficulty of estimation of the RUE for nondegraded land at a regional scale. [source]


Geochemical Tracers to Evaluate Hydrogeologic Controls on River Salinization

GROUND WATER, Issue 3 2008
Stephanie J. Moore
The salinization of rivers, as indicated by salinity increases in the downstream direction, is characteristic of arid and semiarid regions throughout the world. Historically, salinity increases have been attributed to various mechanisms, including (1) evaporation and concentration during reservoir storage, irrigation, and subsequent reuse; (2) displacement of shallow saline ground water during irrigation; (3) erosion and dissolution of natural deposits; and/or (4) inflow of deep saline and/or geothermal ground water (ground water with elevated water temperature). In this study, investigation of salinity issues focused on identification of relative salinity contributions from anthropogenic and natural sources in the Lower Rio Grande in the New Mexico-Texas border region. Based on the conceptual model of the system, the various sources of water and, therefore, salinity to the Lower Rio Grande were identified, and a sampling plan was designed to characterize these sources. Analysis results for boron (,11B), sulfur (,34S), oxygen (,18O), hydrogen (,2H), and strontium (87Sr/86Sr) isotopes, as well as basic chemical data, confirmed the hypothesis that the dominant salinity contributions are from deep ground water inflow to the Rio Grande. The stable isotopic ratios identified the deep ground water inflow as distinctive, with characteristic isotopic signatures. These analyses indicate that it is not possible to reproduce the observed salinization by evapotranspiration and agricultural processes alone. This investigation further confirms that proper application of multiple isotopic and geochemical tracers can be used to identify and constrain multiple sources of solutes in complex river systems. [source]


Global perspective on hydrology, water balance, and water resources management in arid basins

HYDROLOGICAL PROCESSES, Issue 2 2010
Yanjun Shen
Abstract Arid and semiarid regions comprise a large part of the world's terrestrial area and are home to hundreds of millions of people. Water resources in arid regions are rare and critical to society and to ecosystems. The hydrologic cycle in arid and semiarid regions has been greatly altered due to long-term human exploitation. Under conditions of global warming, water resources in these regions are expected to be more unstable and ecosystems likely will suffer from severe water stress. In the current special issue contributed to understanding ecohydrologic processes and water-related problems in arid regions of western China, this paper provides a global perspective on the hydrology and water balance of six major arid basins of the world. A number of global datasets, including the state-of-the-art ensemble simulation of land surface models by GSWP2 (Global Soil Wetness Project II, a project by GEWEX), were used to address the water balance terms in the world's major hydroclimatic regions. The common characteristics of hydrologic cycles and water balance in arid basins are as follows: strong evapotranspiration characterizes the hydrological cycle in arid basins; and in water use sectors irrigation consumes a large amount of water, resulting in degradation of native vegetation. From the ecohydrology viewpoint, a comprehensive study of hydrological and ecological processes of water utilization in arid basins is urgently needed. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Three-parameter discontinuous distributions for hydrological samples with zero values

HYDROLOGICAL PROCESSES, Issue 15 2005
Stanislaw Weglarczyk
Abstract A consistent approach to the frequency analysis of hydrologic data in arid and semiarid regions, i.e. the data series containing several zero values (e.g. monthly precipitation in dry seasons, annual peak flow discharges, etc.), requires using discontinuous probability distribution functions. Such an approach has received relatively limited attention. Along the lines of physically based models, the extensions of the Muskingum-based models to three parameter forms are considered. Using 44 peak flow series from the USGS data bank, the fitting ability of four three-parameter models was investigated: (1) the Dirac delta combined with Gamma distribution; (2) the Dirac delta combined with two-parameter generalized Pareto distribution; (3) the Dirac delta combined with two-parameter Weibull (DWe) distribution; (4) the kinematic diffusion with one additional parameter that controls the probability of the zero event (KD3). The goodness of fit of the models was assessed and compared both by evaluation of discrepancies between the results of both estimation methods (i.e. the method of moments (MOM) and the maximum likelihood method (MLM)) and using the log of likelihood function as a criterion. In most cases, the DWe distribution with MLM-estimated parameters showed the best fit of all the three-parameter models. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Effects of Interactions of Moisture Regime and Nutrient Addition on Nodulation and Carbon Partitioning in Two Cultivars of Bean (Phaseolus vulgaris L.)

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2001
T. Boutraa
Major limitations of bean (Phaseolus vulgaris L.) production in arid and semiarid regions are lack of moisture and low soil fertility. An experiment was conducted to determine the effects of soil moisture and N : P : K (20 : 10 : 10) fertilizer on root and shoot growth of two cultivars of bean: cv. Carioca, an indeterminate Brazilian landrace, and cv. Prince, a determinate cultivar grown in Europe. Carioca appears generally stress-tolerant while Prince is intolerant. Seedlings were grown in pots of non-sterile soil at 30, 60 or 90 % field capacity (FC), and given 0, 0.1 or 1 g (kg soil),1 of compound fertilizer. The soil contained a population of effective Rhizobium. Growth of both cultivars was greatest in the high moisture and high nutrient treatments. Root fractions were highest at low nutrient supply; the effect of water was not significant. Leaf fraction decreased as root fraction increased. Numbers of nodules were highest at high and intermediate moisture when no fertilizer was applied. Numbers were lowest at 30 % FC and at the highest fertilizer rate. Masses of nodules and fractions followed the same pattern. Decreasing water regime reduced the relative growth rate (RGR) of Prince, while Carioca maintained high RGR at unfavourable conditions of water and nutrients. Net assimilation rates (NAR) were unaffected by nutrient addition, and reduced by low moisture regime. Water use efficiencies (WUEs) were reduced by water stress but increased by nutrient deficiency. The water utilization for dry matter production was optimal at 60 % FC. Einflüsse der Interaktionen von Bodendenfeuchte und Düngung auf die Knöllchenbildung und Kohlenstoff verteilung bei zwei Bohnenkultivaren (Phaseolus vulgaris L.) Der begrenzende Hauptfaktor der Bohnenproduktion in ariden und semiariden Regionen sind der Feuchtigkeitsmangel und die Bodenfruchbarkeit. Es wurde ein Experiment durchgeführt, um die Wirkungen des Bodenwassers und von N : P : K (20 : 10 : 10) Dünger auf das Wurzel- und Sproßwachstum an zwei Kultivaren von Bohnen (Phaseolus vulgaris L. cv. Carioca, eine brasilianischen, indeterminierte Landsorte und cv. Prince, eine determinierter in Europa angebauter Kultivar) zu untersuchen. Carioca erscheint grundsätzlich streßtoleranter im Vergleich zu Prince. Die Sämlinge wurden in Gefäßen mit nichtsterilisiertem Boden unter Feldkapazitäten von 30,60 oder 90 % mit 0, 0,1 oder 1 g eines Volldüngers angezogen. Der Boden enthielt eine Population von wirksamem Rhizobium. Das stärkste Wachstum wurde bei beiden Kultivaren unter dem Einfluß des höchsten Feuchtigkeitsgehaltes und der höchsten Düngermenge gefunden. Der Wurzelanteil war bei der geringen Düngermenge am niedrigsten. Der Einfluß der Bodenfeuchtigkeit war nicht signifikant. Der Blattanteil nahm mit zunehmendem Wurzelanteil ab. Die Anzahl der Knötchen war bei hoher und mittlerer Bodenfeuchte und ohne Düngeranwendung am höchsten. Die Anzahl war am geringsten bei 30 % FC und der höchsten Düngermenge. Die Knötchenmasse und ihr Anteil reagierte entsprechend. Abnehmende Bodenfeuchte reduzierte die relative Wachtumsrate (RGR) von Prince, während Carioca einen hohen RGR auch bei ungünstigen Bedingungen bezüglich Wasser und Düngung behielt. Die Nettoassimilationsraten wurden durch die Düngung nicht beeinflußt; sie gingen bei geringer Bodenfeuchte zurück. Die Wassernutzungseffiziens (WUE) wurde bei Wasserstreß reduziert, nahm aber bei Düngermangel zu. Die Wassernutzung für die Trockenmasseproduktion war bei 60 % Feldkapazität am höchsten. [source]


Spot water markets and risk in water supply

AGRICULTURAL ECONOMICS, Issue 2 2005
Javier Calatrava
Water markets; Economic risk; Water availability; Irrigated agriculture Abstract Water availability patterns in semiarid regions are typically extremely variable. Even in basins with a highly developed infrastructure, users are subject to unreliable water supplies, incurring substantial economic losses during periods of scarcity. More flexible instruments, such as voluntary exchanges of water among users, can help users to reduce risk exposure. This article looks at the effects of spot water markets on the economic risk caused by water availability variations. Our theoretical and empirical risk analyses are based on the random profits of water users. Profit probability density functions are formally and graphically characterized for both water sellers and buyers under several possible market outcomes. We conclude from this analysis that, where water supply is stochastic, water markets unambiguously reduce both parties' risk exposure. The empirical study is conducted on an irrigation district in the Guadalquivir Valley (Southern Spain), where there is a high probability of periods of extreme water scarcity. Water demand functions for the district representative irrigators and a spatial equilibrium model are used to simulate market exchanges and equilibrium. This programming model is combined with statistical simulation techniques. We show that the profit probability distribution of a representative irrigator is modified if water exchanges are authorized, leading to risk reductions. Results also indicate that if the market were extended to several districts and users that are subject to varying hydrological risk exposure, extremely low-profit events would be less likely to occur. In sum, we show that exchanging water in annual spot markets can reduce farmers' economic vulnerability caused by water supply variability across irrigation seasons. These results support the water policy reform carried out in Spain in 1999 to allow for voluntary water exchanges among right holders. [source]


Water use (and abuse) and its effects on the crater-lakes of Valle de Santiago, Mexico

LAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 3 2000
Javier Alcocer
Abstract Most Mexicans live in the arid and semiarid regions that represent two-thirds of the Mexican territory, where water is scarce. Natural, as well as human, causes are favouring the degradation of Mexican lakes. There is a clear need to develop and implement sustainable water-use programmes at a catchment scale. However, the accelerated degradation rate of the Mexican lakes means that there will not be enough time to perform whole-basin evaluations to establish sustainable water-use programmes before the lakes dry up. The case of the Valle de Santiago crater-lakes clearly illustrates the declining trend that Mexican inland aquatic resources follow. Vegetation clearance, overgrazing, abatement of phreatic waters and salinization have induced severe erosion and overall desertification (land degradation) in the basin for what, it seems, a long time (i.e. prehispanic times). In this way, human activities could be provoking at least the following negative consequences: a hotter and drier local climate, water scarcity, dust storms and soil salinization. The aquatic (surface and groundwater) resources of the Valle de Santiago basin have been seriously threatened. Two of the four crater-lakes have already dried up and phreatic mantle abatement reaches up to 2.5 m per year. In spite of these facts, no sustainable water-use programme has been established yet. The future scenery of this Mexican basin looks alarmingly like many other basins in the central and northern Mexican territories. [source]


Salinity-related desertification and management strategies: Indian experience

LAND DEGRADATION AND DEVELOPMENT, Issue 4 2009
G. Singh
Abstract High concentration of salts in the rootzone soil limits the productivity of nearly 953 million ha of productive land in the world. Australia, followed by Asia, has the largest area under salinity and sodicity. Most of the salt-affected soils and brackish ground water resources are confined to arid and semiarid regions and are the causative factors for triggering the process of desertification. The problem of salinity and sodicity has degraded about 6·73 million ha area in India. Secondary salinization associated with introduction of irrigation in dry areas like Thar desert in the western part of the country and Sharda Sahayak in Central India have caused desertification due to rise of salts with the rise in ground water level. Large scale cultivation of prawns using sea water in coastal Andhra Pradesh and elsewhere rendered about 2.1 million ha area unfit for agriculture. Similarly, 30,84 per cent ground water in north-western states of the country is either saline and /or brackish and is unfit for irrigation. Use of marginal quality water for irrigation has rendered several thousand ha of productive land unfit for cultivation. The Central Soil Salinity Research Institute was established in 1969 at Karnal to develop sustainable and eco-friendly technologies for reclamation and management of salt-affected soils and judicious use of marginal quality waters. The institute has developed location-specific techniques for reversion of salinity related desertification in India. Salient findings of research during the last three decades and more are presented in this review. This paper deals with (a) classification, nature and extent of salt-affected soils and poor quality water in India, (b) case studies/socio-economic concerns of salinity related desertification, (c) chemical, hydrological and biological approaches in use for rehabilitation of salt-affected soils, (d) guidelines for safe and productive use of marginal quality ground water through cyclic and mixed mode and precision irrigation techniques, (e) successful rehabilitation case studies, (f) alternate land use practices such as raising forest plantations, horticulture, agroforestry, high value medicinal, aromatic and flowering crops, etc., (g) technological, social, economic and environmental impacts and (h) future line of research. Issues requiring policy initiatives to halt salinity-related desertification are also discussed in this review paper. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Cultivation of medicinal isabgol (Plantago ovata) in alkali soils in semiarid regions of Northern India

LAND DEGRADATION AND DEVELOPMENT, Issue 3 2006
J. C. Dagar
Abstract There is growing global demand for medicinal drugs including isabgol (Plantago ovata). With increasing demand of food for an ever-increasing population in India, it is not possible to bring arable lands under cultivation for aromatic and medicinal plants. Salt-affected lands (both saline and alkali) occupy about 8·6 million ha. Due to poor physical properties and excessive exchangeable Na+, most of these lands do not support good vegetation cover. The marginal and salt-affected lands could be successfully utilized for the cultivation of aromatic and medicinal plants. We achieved almost complete germination of isabgol seeds using up to 5000,ppm salt-solution. Grain yield (including husk) was 1·47 to 1·58,t,ha,1 at pH 9·2 showing no significant yield reduction as compared to normal soil. At pH 9·6 the grain yield was 1·03 to 1·12,t,ha,1. At higher pH there was significant reduction in yield. Sowing in good moisture (at field capacity) of soil was found best, but to save time sowing at shallow depth in dry soil, followed by irrigation was also suitable as compared to broadcasting seeds. The chlorophyll content was greater 70 days after sowing compared to younger stages (50 days after sowing). The total chlorophyll and plant biomass were lower from crops grown by broadcasting methods of sowing as compared to two other methods of sowing. The leaf area index (LAI) was higher for the broadcasting method of sowing as compared to the other two methods. Na+ absorption increased and K+ and K+/Na+ ratio decreased with increase in pH. Results reported in this paper clearly indicate that isabgol can successfully be grown on moderately alkali soils up to pH 9·6 without the application of any amendment. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Carbon sequestration in soils of central Asia,

LAND DEGRADATION AND DEVELOPMENT, Issue 6 2004
R. Lal
Abstract Problems of frequent drought stress, low soil organic carbon (SOC) concentration, low aggregation, susceptibility to compaction, salinization and accelerated soil erosion in dry regions are accentuated by removal of crop residues, mechanical methods of seedbed preparation, summer clean fallowing and overgrazing, and excessive irrigation. The attendant soil degradation and desertification lead to depletion of SOC, decline in biomass production, eutrophication/pollution of waters and emission of greenhouse gases. Adoption of conservation agriculture, based on the use of crop residue mulch and no till farming, can conserve water, reduce soil erosion, improve soil structure, enhance SOC concentration, and reduce the rate of enrichment of atmospheric CO2. The rate of SOC sequestration with conversion to conservation agriculture, elimination of summer fallowing and growing forages/cover crops may be 100 to 200,kg,ha,1,y,1 in coarse-textured soils of semiarid regions and 150 to 300,kg,ha,1,y,1 in heavy-textured soils of the subhumid regions. The potential of soil C sequestration in central Asia is 10 to 22,Tg,C,y,1 (16±8,Tg,C,y,1) for about 50 years, and it represents 20,per,cent of the CO2 emissions by fossil fuel combustion. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Economic drought management index to evaluate water institutions' performance under uncertainty*

AUSTRALIAN JOURNAL OF AGRICULTURAL & RESOURCE ECONOMICS, Issue 1 2007
Eva Iglesias
Reservoir management and intertemporal water allocation are critical issues in semiarid regions where agriculture has to confront highly variable rainfall patterns. In this paper, we derive and propose an economic drought management index (EDMI) to evaluate water institutions' performance to cope with drought risk. The EDMI is based on the optimal conditions of a stochastic dynamic optimisation problem that characterises reservoir management. The index's main advantages are its ease of interpretation and breadth of scope, as it incorporates information on hydrological processes, structural constraints, water institutions' rules, and the economic benefits of water use. An empirical application is developed to assess the institutional rules governing water allocation in two different supply systems in Andalusia (southern Spain). [source]