Seismic Response (seismic + response)

Distribution by Scientific Domains

Kinds of Seismic Response

  • nonlinear seismic response


  • Selected Abstracts


    Estimation of Frequency-Dependent Strong Motion Duration Via Wavelets and Its Influence on Nonlinear Seismic Response

    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, Issue 4 2008
    Luis A. Montejo
    The proposed procedure utilizes the continuous wavelet transform and is based on the decomposition of the earthquake record into a number of component time histories (named "pseudo-details") with frequency content in a selected range. The "significant" strong motion duration of each pseudo-detail is calculated based on the accumulation of the Arias intensity (AI). Finally, the FDSMD of the earthquake record in different frequency ranges is defined as the strong motion duration of the corresponding pseudo-detail scaled by a weight factor that depends on the AI of each pseudo-detail. The efficiency of this new strong motion definition as an intensity measure is evaluated using incremental dynamic analysis (IDA). The results obtained show that the proposed FDSMD influence the peak response of short-period structures with stiffness and strength degradation. [source]


    A Wavelet-Based Approach to Identifying Structural Modal Parameters from Seismic Response and Free Vibration Data

    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, Issue 6 2005
    C. S. Huang
    The wavelet transform with orthonormal wavelets is applied to the measured acceleration responses of a structural system, and to reconstruct the discrete equations of motion in various wavelet subspaces. The accuracy of this procedure is numerically confirmed; the effects of mother wavelet functions and noise on the ability to accurately estimate the dynamic characteristics are also investigated. The feasibility of the present procedure to elucidate real structures is demonstrated through processing the measured responses of steel frames in shaking table tests and the free vibration responses of a five-span arch bridge with a total length of 440 m. [source]


    Seismic response of intake towers including dam,tower interaction

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 3 2009
    M. A. Millán
    Abstract The seismic response of the intake,outlet towers has been widely analyzed in recent years. The usual models consider the hydrodynamic effects produced by the surrounding water and the interior water, characterizing the dynamic response of the tower,water,foundation,soil system. As a result of these works, simplified added mass models have been developed. However, in all previous models, the surrounding water is assumed to be of uniform depth and to have infinite extension. Consequently, the considered added mass is associated with only the pressures created by the displacements of the tower itself. For a real system, the intake tower is usually located in proximity to the dam and the dam pressures may influence the equivalent added mass. The objective of this paper is to investigate how the response of the tower is affected by the presence of the dam. A coupled three-dimensional boundary element-finite element model in the frequency domain is employed to analyze the tower,dam,reservoir interaction problem. In all cases, the system response is assumed to be linear, and the effect of the internal fluid and the soil,structure interaction effects are not considered. The results suggest that unexpected resonance amplifications can occur due to changes in the added mass for the tower as a result of the tower,dam,reservoir interaction. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Seismic response of three-dimensional r/c multi-storey frame building under uni- and bi-directional input ground motion

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 12 2007
    Gennaro Magliulo
    Abstract This paper deals with seismic analysis of plan-asymmetric r/c frame multi-storey buildings. Non-linear numerical analyses are carried out by using a lumped plasticity model for beams and a multi-spring model for columns, the latter one introduced to account for axial force,biaxial bending moment interaction. A comparison between numerical analyses and experimental test results is reported in order to calibrate the numerical model, showing that the adopted model is very suitable. In order to study the effects of the earthquake orthogonal component, the seismic response of the modelled structure under uni-directional excitation is compared to the one under bi-directional excitation. Such comparison shows that the maximum base shear and the top displacement are not very sensitive to the presence of the orthogonal component, which, conversely, leads to large increase in the column plastic excursions. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Seismic response of slopes subjected to incident SV wave by an improved boundary element approach

    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 10 2007
    Behrouz Gatmiri
    Abstract In this paper, an improved boundary element approach for 2D elastodynamics in time-domain is presented. This approach consists in the truncation of time integrations, based on the rapid decrease of the fundamental solutions with time. It is shown that an important reduction of the computation time as well as the storage requirement can be achieved. Moreover, for half-plane problems, the size of boundary element (BE) meshes and the computation time can be significantly reduced. The proposed approach is used to study the seismic response of slopes subjected to incident SV waves. It is found that large amplifications take place on the upper surface close to the slope, while attenuations are produced on the lower surface. The results also show that surface motions become very complex when the incident wavelength is comparable with the size of the slope or when the slope is steep. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Experimental study of dynamic damage of an arch dam

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 3 2007
    Haibo Wang
    Abstract Seismic responses of a 292-m high arch dam were studied by experiment on a shaking table. The model system included the arch dam with contraction joints, a part of a reservoir, and a partial foundation with a topographic feature near the dam. Potential rock wedges on the abutments and the mechanical properties including uplift on the kinematic planes were carefully simulated. A damping boundary consisting of a viscous liquid was introduced to simulate the effect of dynamic energy emission to far field, which made the dynamic interaction between the dam and the foundation be adequately represented in the model test of an arch dam system. Dynamic responses of the arch dam system under a sequence of seismic loadings in increasing strength were examined. Eleven cracks or overstresses on the model dam due to the earthquake excitations were observed, and consequently, its natural frequency dropped by about 14%, but the model dam was stable under the hydrostatic load of the impounded water after the test. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Experimental investigation on the seismic response of a steel liquid storage tank equipped with floating roof by shaking table tests

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 4 2010
    M. De Angelis
    Abstract In this paper, the effectiveness of the base isolation on steel storage tanks has been investigated through numerical models and then checked by shaking table tests on a reduced scale (1:14) model of a real steel tank, typically used in petrochemical plants. In the experimental campaign the floating roof has also been taken into account. The tests have been performed on the physical model both in fixed and isolated base configurations; in particular two alternative base isolation systems have been used: high-damping rubber bearings devices and sliding isolators with elasto-plastic dampers. Finally, a comparison between experimental and numerical results has also been performed. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Probabilistic estimate of seismic response design values of RC frames

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 15 2009
    Angelo D'Ambrisi
    Abstract Probabilistically controlled design values of the nonlinear seismic response of reinforced concrete frames are obtained using a method previously proposed by the authors. The method allows to calculate conservative design values characterized by a predefined non-exceedance probability, using a limited number of spectrum-fitting generated accelerograms. Herein the method is applied to elastic-strain hardening single degree of freedom systems representative of RC framed structures and is then assessed with reference to four reinforced concrete model frames designed according to EC8. The frames are characterized by different natural periods and aspect ratios. The results, compared with those obtained applying current EC8 recommendations, show the effectiveness of the proposed method. EC8 provides for design values of the seismic response of a structure with a nonlinear behavior computed as the mean value of the responses to seven accelerograms or as the maximum value of the responses to three accelerograms. These two criteria lead to design values characterized by very different and uncontrolled non-exceedance probability levels, while the proposed method allows the analyst to directly control the non-exceedance probability level of the calculated design values. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    On the evaluation of seismic response of structures by nonlinear static methods

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 13 2009
    Melina Bosco
    Abstract In the most recent seismic codes, the assessment of the seismic response of structures may be carried out by comparing the displacement capacity, provided by nonlinear static analysis, with the displacement demand. In many cases the code approach is based on the N2 method proposed by Fajfar, which evaluates the displacement demand by defining, as an intermediate step, a single degree-of-freedom (SDOF) system equivalent to the examined structure. Other codes suggest simpler approaches, which do not require equivalent SDOF systems, but they give slightly different estimation of the seismic displacement demand. The paper points out the differences between the methods and suggests an operative approach that provides the same accuracy as the N2 method without requiring the evaluation of an equivalent SDOF system. A wide parametric investigation allows an accurate comparison of the different methods and demonstrates the effectiveness of the proposed operative approach. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Seismic behavior of single-story asymmetric-plan buildings under uniaxial excitation

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 9 2009
    Andrea Lucchini
    Abstract The critical parameters that influence the nonlinear seismic response of asymmetric-plan buildings are identified by evaluating the effects of different asymmetries that may characterize the structure of a building as well as exploring the influence of the ground motion features. First, the main findings reported in the literature on both the linear and nonlinear dynamic response of asymmetric-plan buildings are presented. The common findings and the conflicting conclusions reached in different investigations are pointed out. Then, the results of comprehensive nonlinear dynamic analyses performed for evaluating the seismic response of systems characterized by different strength and stiffness configurations, representative of a large class of asymmetric-plan buildings, are reported. Findings from the study indicate that the building response changes when moving from the linear to the nonlinear range, so that the seismic behavior of asymmetric-plan buildings, apart from the source of asymmetry, can be always classified as irregular. Additionally, it was observed that as the seismic demands cause amplification of system nonlinearity with increasing earthquake intensity, the maximum displacement demand in the different resisting elements tends to be reached with the same deformed configuration of the system. The resultant of the seismic forces producing such a maximum demand is located at the center of resistance and corresponds to the collapse mechanism of the system that provides the maximum lateral strength in the exciting direction of the seismic action. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Design of passive systems for control of inelastic structures

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 6 2009
    Gian Paolo Cimellaro
    Abstract A design strategy for control of buildings experiencing inelastic deformations during seismic response is formulated. The strategy is using weakened, and/or softened, elements in a structural system while adding passive energy dissipation devices (e.g. viscous fluid devices, etc.) in order to control simultaneously accelerations and deformations response during seismic events. A design methodology is developed to determine the locations and the magnitude of weakening and/or softening of structural elements and the added damping while insuring structural stability. A two-stage design procedure is suggested: (i) first using a nonlinear active control algorithm, to determine the new structural parameters while insuring stability, then (ii) determine the properties of equivalent structural parameters of passive system, which can be implemented by removing or weakening some structural elements, or connections, and by addition of energy dissipation systems. Passive dampers and weakened elements are designed using an optimization algorithm to obtain a response as close as possible to an actively controlled system. A case study of a five-story building subjected to El Centro ground motion, as well as to an ensemble of simulated ground motions, is presented to illustrate the procedure. The results show that following the design strategy, a control of both peak inter-story drifts and total accelerations can be obtained. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Structural seismic response analysis based on multiscale approach of computing fault,structure system

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 4 2009
    T. Ichimura
    Abstract Structural safety for earthquake waves emitted from a nearby fault is a major concern. For a large complex structure, it might be desired to estimate its seismic response by analyzing a fault,structure system: a full three-dimensional model in which a source fault and a target structure are modeled so that fault processes, wave propagation and amplification processes, and resulting dynamic responses of the structure can be computed numerically. To analyze this fault,structure system, this paper proposes an efficient approach based on multiscale analysis, i.e. waves emitted from the source fault are computed in the entire system in the geological length-scale; then they are refined in a small part of the system that includes the structure, and the seismic response of the structure is accurately computed in the engineering length-scale. Using a long highway tunnel as an example, this paper examines the validity of the proposed approach. The usefulness and applicability of the proposed approach to estimate the structural seismic responses are discussed. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Numerical simulation of reinforcement strengthening for high-arch dams to resist strong earthquakes

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 15 2008
    Yuchuan Long
    Abstract This paper focuses on analyzing the nonlinear seismic response of high-arch dams with cantilever reinforcement strengthening. A modified embedded-steel model is presented to evaluate the effects of the strengthening measure on alleviating the extension and opening of cracks under strong earthquakes. By stiffening reinforced steel, this model can easily consider the steel,concrete interaction for lightly reinforced concrete (RC) members without the need of dividing them into RC and plain concrete zones. The new tensile constitutive relations of reinforced steel are derived from the load,deformation relationship of RC members in direct tension. This model has been implemented in the finite element code and its applicability is verified by two numerical simulations for RC tests. Subsequently, numerical analyses for a 210-m high-arch dam (Dagangshan arch dam) are conducted with and without the presence of cantilever reinforcement. Numerical results show that reinforcement strengthening can reduce the nonlinear response of the arch dam, e.g. joint opening and crest displacement, and limit the extension and opening width of concrete cracks. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Dynamic systems with high damping rubber: Nonlinear behaviour and linear approximation

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 13 2008
    Andrea Dall'Asta
    Abstract High damping rubber (HDR) shows a quite complex constitutive behaviour, which is nonlinear with respect to strain and is dependent on the strain rate. In addition, it exhibits a transient response during which the material properties change (scragging or more generally the Mullins effect). A number of recent works were dedicated to analysing and modelling material behaviour. This paper studies the nonlinear dynamics of systems with restoring force produced by HDR-based devices in order to propose a procedure to define equivalent linear models considering both transient and stationary behaviours. The reliability of these linear models is tested by evaluating the upper and lower bounds of the seismic response of a structural system equipped with HDR-based devices (structural system with dissipative bracings and isolated systems). Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Spectral analysis and design approach for high force-to-volume extrusion damper-based structural energy dissipation

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 2 2008
    Geoffrey W. Rodgers
    Abstract High force-to-volume extrusion damping devices can offer significant energy dissipation directly in structural connections and significantly reduce seismic response. Realistic force levels up to 400,kN have been obtained experimentally validating this overall concept. This paper develops spectral-based design equations for their application. Response spectra analysis for multiple, probabilistically scaled earthquake suites are used to delineate the response reductions due to added extrusion damping. Representative statistics and damping reduction factors are utilized to characterize the modified response in a form suitable for current performance-based design methods. Multiple equation regression analysis is used to characterize reduction factors in the constant acceleration, constant velocity, and constant displacement regions of the response spectra. With peak device forces of 10% of structural weight, peak damping reduction factors in the constant displacement region of the spectra are approximately 6.5,×, 4.0,×, and 2.8,× for the low, medium, and high suites, respectively. At T,=,1,s, these values are approximately 3.6,×, 1.8,×, and 1.4,×, respectively. The maximum systematic bias introduced by using empirical equations to approximate damping reduction factors in design analyses is within the range of +10 to ,20%. The seismic demand spectrum approach is shown to be conservative across a majority of the spectrum, except for large added damping between T,=,0.8 and 3.5,s, where it slightly underestimates the demand up to a maximum of approximately 10%. Overall, the analysis shows that these devices have significant potential to reduce seismic response and damage at validated prototype device force levels. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Compensation of actuator delay and dynamics for real-time hybrid structural simulation

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 1 2008
    M. Ahmadizadeh
    Abstract Compensation of delay and dynamic response of servo-hydraulic actuators is critical for stability and accuracy of hybrid experimental and numerical simulations of seismic response of structures. In this study, current procedures for compensation of actuator delay are examined and improved procedures are proposed to minimize experimental errors. The new procedures require little or no a priori information about the behavior of the test specimen or the input excitation. First, a simple approach is introduced for rapid online estimation of system delay and actuator command gain, thus capturing the variability of system response through a simulation. Second, an extrapolation procedure for delay compensation, based on the same kinematics equations used in numerical integration procedures is examined. Simulations using the proposed procedures indicate a reduction in high-frequency noise in force measurements that can minimize the excitation of high-frequency modes. To further verify the effectiveness of the compensation procedures, the artificial energy added to a hybrid simulation as a result of actuator tracking errors is measured and used for demonstrating the improved accuracy in the simulations. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Estimation of seismic drift and ductility demands in planar regular X-braced steel frames

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 15 2007
    Theodore L. Karavasilis
    Abstract This paper summarizes the results of an extensive study on the inelastic seismic response of X-braced steel buildings. More than 100 regular multi-storey tension-compression X-braced steel frames are subjected to an ensemble of 30 ordinary (i.e. without near fault effects) ground motions. The records are scaled to different intensities in order to drive the structures to different levels of inelastic deformation. The statistical analysis of the created response databank indicates that the number of stories, period of vibration, brace slenderness ratio and column stiffness strongly influence the amplitude and heightwise distribution of inelastic deformation. Nonlinear regression analysis is employed in order to derive simple formulae which reflect the aforementioned influences and offer a direct estimation of drift and ductility demands. The uncertainty of this estimation due to the record-to-record variability is discussed in detail. More specifically, given the strength (or behaviour) reduction factor, the proposed formulae provide reliable estimates of the maximum roof displacement, the maximum interstorey drift ratio and the maximum cyclic ductility of the diagonals along the height of the structure. The strength reduction factor refers to the point of the first buckling of the diagonals in the building and thus, pushover analysis and estimation of the overstrength factor are not required. This design-oriented feature enables both the rapid seismic assessment of existing structures and the direct deformation-controlled seismic design of new ones. A comparison of the proposed method with the procedures adopted in current seismic design codes reveals the accuracy and efficiency of the former. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Seismic response of three-dimensional r/c multi-storey frame building under uni- and bi-directional input ground motion

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 12 2007
    Gennaro Magliulo
    Abstract This paper deals with seismic analysis of plan-asymmetric r/c frame multi-storey buildings. Non-linear numerical analyses are carried out by using a lumped plasticity model for beams and a multi-spring model for columns, the latter one introduced to account for axial force,biaxial bending moment interaction. A comparison between numerical analyses and experimental test results is reported in order to calibrate the numerical model, showing that the adopted model is very suitable. In order to study the effects of the earthquake orthogonal component, the seismic response of the modelled structure under uni-directional excitation is compared to the one under bi-directional excitation. Such comparison shows that the maximum base shear and the top displacement are not very sensitive to the presence of the orthogonal component, which, conversely, leads to large increase in the column plastic excursions. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    A new approach of selecting real input ground motions for seismic design: The most unfavourable real seismic design ground motions

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 8 2007
    Chang-Hai Zhai
    Abstract This paper presents a new way of selecting real input ground motions for seismic design and analysis of structures based on a comprehensive method for estimating the damage potential of ground motions, which takes into consideration of various ground motion parameters and structural seismic damage criteria in terms of strength, deformation, hysteretic energy and dual damage of Park & Ang damage index. The proposed comprehensive method fully involves the effects of the intensity, frequency content and duration of ground motions and the dynamic characteristics of structures. Then, the concept of the most unfavourable real seismic design ground motion is introduced. Based on the concept, the most unfavourable real seismic design ground motions for rock, stiff soil, medium soil and soft soil site conditions are selected in terms of three typical period ranges of structures. The selected real strong motion records are suitable for seismic analysis of important structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake, as they can cause the greatest damage to structures and thereby result in the highest damage potential from an extended real ground motion database for a given site. In addition, this paper also presents the real input design ground motions with medium damage potential, which can be used for the seismic analysis of structures located at the area with low and moderate seismicity. The most unfavourable real seismic design ground motions are verified by analysing the seismic response of structures. It is concluded that the most unfavourable real seismic design ground motion approach can select the real ground motions that can result in the highest damage potential for a given structure and site condition, and the real ground motions can be mainly used for structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Pure aluminium shear panels as dissipative devices in moment-resisting steel frames

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 7 2007
    G. De Matteis
    Abstract The use of energy dissipation systems for the seismic control of steel structures represents a valid alternative to conventional seismic design methods. The seismic devices currently employed are mostly based on the metallic yielding technology due to the large feasibility and efficiency they can provide. Within this context, in the current paper an innovative solution based on the adoption of low-yield-strength pure aluminium shear panels (SPs) for seismic protection of steel moment-resisting frames is proposed and investigated. In order to prove the effectiveness of the system, a wide numerical study based on both static and dynamic non-linear analyses has been carried out, considering a number of different frame-to-shear panel combinations, aiming at assessing the effect of the main influential parameters on the seismic response of the structure. The obtained results show that the contribution provided by aluminium SPs is rather significant, allowing a remarkable improvement of the seismic performance of the structure in terms of stiffness, strength and ductility, with the possibility to strongly limit the damage occurring in the members of moment-resisting frames. In particular, it is clearly emphasized that the stiffening effect provided by SPs allows a more rational design procedure to be adopted, since the serviceability limit state check does not lead to unavoidable and uneconomical increase of the size of main structural members. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Influence of dynamic soil,structure interaction on the nonlinear response and seismic reliability of multistorey systems

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 3 2007
    Armando Bárcena
    Abstract A set of reinforced concrete structures with gravitational loads and mechanical properties (strength and stiffness) representative of systems designed for earthquake resistance in accordance with current criteria and methods is selected to study the influence of dynamic soil,structure interaction on seismic response, ductility demands and reliability levels. The buildings are considered located at soft soil sites in the Valley of Mexico and subjected to ground motion time histories simulated in accordance with characteristic parameters of the maximum probable earthquake likely to occur during the system's expected life. For the near-resonance condition the effects of soil,structure interaction on the ductility demands depend mainly on radiation damping. According to the geometry of the structures studied this damping is strongly correlated with the aspect ratio, obtained by dividing the building height by its width. In this way, for structures with aspect ratio greater than 1.4 the storey and global ductility demands increase with respect to those obtained with the same structures but on rigid base, while for structures with aspect ratio less than 1.4 the ductility demands decrease with respect to those for the structures on rigid base. For the cases when the fundamental period of the structure has values very different from the dominant ground period, soil,structure interaction leads in all cases to a reduction of the ductility demands, independently of the aspect ratio. The reliability index , is obtained as a function of the base shear ratio and of the seismic intensity acting on the nonlinear systems subjected to the simulated motions. The resulting reliability functions are very similar for systems on rigid or on flexible foundation, provided that in the latter case the base rotation and the lateral displacement are removed from the total response of the system. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Torsional balance of plan-asymmetric structures with frictional dampers: experimental results

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 15 2006
    Ignacio J. Vial
    Abstract This investigation deals with the measured seismic response of a six-storey asymmetric structural model with frictional dampers. Its main objective is to experimentally prove the concept of weak torsional balance for mass- and stiffness-eccentric model configurations. The goal is to control the torsional response of these asymmetric structures and to achieve, if possible, a weak form of torsional balance by placing the so-called empirical centre of balance (ECB) of the structure at equal distance from the edges of the building plan. The control of the dynamic response of asymmetric structures is investigated herein by using steel,teflon frictional dampers. As expected from theory, experimental results show that the mean-square and peak displacement demand at the flexible and stiff edges of the plan may be similar in magnitude if the dampers are optimally placed. Frictional dampers have proven equally effective in controlling lateral-torsional coupling of torsionally flexible as well as stiff structures. On the other hand, it is shown that impulsive ground motions require larger frictional capacities to achieve weak torsional balance. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Shaking table tests on seismic response of steel braced frames with column uplift

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 14 2006
    Mitsumasa Midorikawa
    Abstract Previous studies have suggested that rocking vibration accompanied by uplift motion might reduce the seismic damage to buildings subjected to severe earthquake motions. This paper reports on the use of shaking table tests and numerical analyses to evaluate and compare the seismic response of base-plate-yielding rocking systems with columns allowed to uplift with that of fixed-base systems. The study is performed using half-scale three-storey, 1 × 2 bay braced steel frames with a total height of 5.3 m. Base plates that yield due to column tension were installed at the base of each column. Two types of base plates with different thicknesses are investigated. The earthquake ground motion used for the tests and analyses is the record of the 1940 El Centro NS component with the time scale shortened by a factor of 1/,2. The maximum input acceleration is scaled to examine the structural response at various earthquake intensities. The column base shears in the rocking frames with column uplift are reduced by up to 52% as compared to the fixed-base frames. Conversely, the maximum roof displacements of the fixed and rocking frames are about the same. It is also noted that the effect of the vertical impact on the column associated with touchdown of the base plate is small because the difference in tensile and compressive forces is primarily due to the self-limiting tensile force in the column caused by yielding of the base plate. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Bench,shelf system dynamic characteristics and their effects on equipment and contents

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 13 2006
    Tara C. Hutchinson
    Abstract Economic losses during past earthquakes are strongly associated with damage and failure to nonstructural equipment and contents. Among the vast types of nonstructural elements, one important category, is scientific equipment in biological or chemical laboratories. These equipment are often mounted on heavy ceramic bench-tops of bench,shelf systems, which in turn may amplify the dynamic motions imposed. To investigate the seismic response of these types of systems, a series of shake table and field experiments were conducted considering different representative bench and shelf-mounted equipment and contents. Results from shake table experiments indicate that these equipment are generally sliding-dominated. In addition, the bench,shelf system is observed to be very stiff and when lightly loaded, has a fundamental frequency between 10 and 16 Hz. An approximate 50% reduction in the first and second fundamental frequencies is observed considering practical loading conditions. Insight into a broader range of system response is provided by conducting eigenvalue and time history analyses. Non-linear regression through the numerical data indicate acceleration amplification ratios , range from 2.6 to 1.4 and from 4.3 to 1.6, for fixed,fixed and pinned,pinned conditions, respectively. Both the experimental and numerical results support the importance of determining the potential dynamic amplification of motion in the context of accurately determining the maximum sliding displacement of support equipment and contents. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Pre- and post-test mathematical modelling of a plan-asymmetric reinforced concrete frame building,

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 11 2006
    Peter Fajfar
    Abstract Pre- and post-test analyses of the structural response of a three-storey asymmetric reinforced concrete frame building were performed, aimed at supporting test preparation and performance as well as studying mathematical modelling. The building was designed for gravity loads only. Full-scale pseudo-dynamic tests were performed in the ELSA laboratory in Ispra. In the paper the results of initial parametric studies, of the blind pre-test predictions, and of the post-test analysis are summarized. In all studies a simple mathematical model, with one-component member models with concentrated plasticity was employed. The pre-test analyses were performed using the CANNY program. After the test results became available, the mathematical model was improved using an approach based on a displacement-controlled analysis. Basically, the same mathematical model was used as in pre-test analyses, except that the values of some of the parameters were changed. The OpenSees program was employed. Fair agreement between the test and numerical results was obtained. The results prove that relatively simple mathematical models are able to adequately simulate the detailed seismic response of reinforced concrete frame structures to a known ground motion, provided that the input parameters are properly determined. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Effect of train dynamics on seismic response of steel monorail bridges under moderate ground motion

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 10 2006
    Chul-Woo Kim
    Abstract This study is intended to investigate the seismic response of steel monorail bridges using three-dimensional dynamic response analysis. We particularly consider monorail bridge,train interaction when subjected to ground motion that occurs with high probability. A monorail train car with two bogies with pneumatic tires for running, steering and stabilizing wheels is assumed to be represented sufficiently by a discrete rigid multi-body system with 15 degrees of freedom (DOFs). Bridges are considered as an assemblage of beam elements with 6 DOFs at each node. Modal analysis is used for dynamic response analysis under moderate earthquakes. The seismic response of an advanced monorail bridge that adopts a simplified structural system and composite girders is investigated through comparison with seismic responses of a conventional bridge. The acceleration response of a monorail train is also calculated to investigate the effect of structural types of bridges on the train's dynamic response during earthquakes. Results show that the seismic responses of the advanced bridges are greater than those of the conventional monorail bridge because of the simplified structural system and increased girder weight that is attributable to composite girders of the advanced bridge. Moreover, the train on the advanced bridge shows greater dynamic response than that on the conventional bridge. Observations reveal that the dynamic monorail train system acts as a damper on the monorail bridge. That fact shows that the existing design, which considers a train as additional mass, yields a conservative result. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Ground motion duration effects on nonlinear seismic response

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 1 2006
    Iunio Iervolino
    Abstract The study presented in this paper addresses the question of which nonlinear demand measures are sensitive to ground motion duration by statistical analyses of several case studies. A number of single degree of freedom (SDOF) structures were selected considering: (1) four oscillation periods; (2) three evolutionary and non-evolutionary hysteretic behaviours; (3) two target ductility levels. Effects of duration are investigated, by nonlinear dynamic analysis, with respect to six different demand indices ranging from displacement ductility ratio to equivalent number of cycles. Input is made of six real accelerogram sets representing three specific duration scenarios (small, moderate and large duration). For all considered demand quantities time-history results are formally compared by statistical hypothesis test to asses the difference, if any, in the demand concerning different scenarios. Incremental dynamic analysis curves are used to evaluate duration effect as function of ground motion intensity (e.g. spectral acceleration corresponding to the SDOF's oscillation period). Duration impact on structural failure probability is evaluated by fragility curves. The results lead to the conclusion that duration content of ground motion is statistically insignificant to displacement ductility and cyclic ductility demand. The conclusions hold regardless of SDOF's period and hysteretic relationship investigated. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Pseudo-dynamic seismic response of reinforced concrete frames infilled with non-structural brick masonry

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 10 2005
    F. Colangelo
    Abstract This paper presents pseudo-dynamic test results on the in-plane seismic behaviour of infilled frames. Thirteen single-storey, single-bay, half-size-scale, reinforced concrete-frame specimens, most of which infilled with non-structural masonry made of perforated bricks and cement mortar are tested. The infills are in contact with frames, without any connector; openings are not covered. The frames are different in their strength and details, reinforcement grade, and aspect ratio. Seismic input is the 1976 Tolmezzo (Friuli, Italy) ground acceleration, to which specimens are subjected two times: virgin and damaged by the previous test. The global seismic response of initially virgin infilled specimens considerably differs from that of bare specimens. This follows a dramatic change of properties: compared to a bare frame, the initial stiffness increases by one order of magnitude, and the peak strength more than doubles. The peak drift lessens; however, the displacement ductility demand does not. The energy demand is greater. Nevertheless, the influence of infill decreases as damage proceeds. Displacement time histories of damaged specimens are quite similar. At the local level, infill causes asymmetry and concentration of the frame deformation. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Seismic response analysis of multidrum classical columns

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 10 2005
    Dimitrios Konstantinidis
    Abstract This paper presents a numerical investigation on the seismic response of multidrum classical columns. The motivation for this study originates from the need to understand: (a) the level of ground shaking that classical multidrum columns can survive, and (b) the possible advantages or disadvantages of retrofitting multidrum columns with metallic shear links that replace the wooden poles that were installed in ancient times. The numerical study presented in this paper is conducted with the commercially available software Working Model 2DÔ, which can capture with fidelity the sliding, rocking, and slide-rocking response of rigid-body assemblies. This paper validates the software Working Model by comparing selected computed responses with scarce analytical solutions and the results from in-house numerical codes initially developed at the University of California, Berkeley, to study the seismic response of electrical transformers and heavy laboratory equipment. The study reveals that relative sliding between drums happens even when the g -value of the ground acceleration is less than the coefficient of friction, µ, of the sliding interfaces and concludes that: (a) typical multidrum classical columns can survive the ground shaking from strong ground motions recorded near the causative faults of earthquakes with magnitudes Mw=6.0,7.4; (b) in most cases multidrum classical columns free to dislocate at the drum interfaces exhibit more controlled seismic response than the monolithic columns with same size and slenderness; (c) the shear strength of the wooden poles has a marginal effect on the sliding response of the drums; and (d) stiff metallic shear links in-between column drums may have an undesirable role on the seismic stability of classical columns and should be avoided. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Three-dimensional models of reservoir sediment and effects on the seismic response of arch dams

    EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 10 2004
    O. Maeso
    Abstract The important effects of bottom sediments on the seismic response of arch dams are studied in this paper. To do so, a three-dimensional boundary element model is used. It includes the water reservoir as a compressible fluid, the dam and unbounded foundation rock as viscoelastic solids, and the bottom sediment as a two-phase poroelastic domain with dynamic behaviour described by Biot's equations. Dynamic interaction among all those regions, local topography and travelling wave effects are taken into account. The results obtained show the important influence of sediment compressibility and permeability on the seismic response. The former is associated with a general change of the system response whereas the permeability has a significant influence on damping at resonance peaks. The analysis is carried out in the frequency domain considering time harmonic excitation due to P and S plane waves. The time-domain results obtained by using the Fourier transform for a given earthquake accelerogram are also shown. The possibility of using simplified models to represent the bottom sediment effects is discussed in the paper. Two alternative models for porous sediment are tested. Simplified models are shown to be able to reproduce the effects of porous sediments except for very high permeability values. Copyright © 2004 John Wiley & Sons, Ltd. [source]