Home About us Contact | |||
Seismic Reflection Profiles (seismic + reflection_profile)
Selected AbstractsCenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan regionBASIN RESEARCH, Issue 4 2003A. T. Lin Seismic reflection profiles and well data are used to determine the Cenozoic stratigraphic and tectonic development of the northern margin of the South China Sea. In the Taiwan region, this margin evolved from a Palaeogene rift to a latest Miocene,Recent foreland basin. This evolution is related to the opening of the South China Sea and its subsequent partial closure by the Taiwan orogeny. Seismic data, together with the subsidence analysis of deep wells, show that during rifting (,58,37 Ma), lithospheric extension occurred simultaneously in discrete rift belts. These belts form a >200 km wide rift zone and are associated with a stretching factor, ,, in the range ,1.4,1.6. By ,37 Ma, the focus of rifting shifted to the present-day continent,ocean boundary off southern Taiwan, which led to continental rupture and initial seafloor spreading of the South China Sea at ,30 Ma. Intense rifting during the rift,drift transition (,37,30 Ma) may have induced a transient, small-scale mantle convection beneath the rift. The coeval crustal uplift (Oligocene uplift) of the previously rifted margin, which led to erosion and development of the breakup unconformity, was most likely caused by the induced convection. Oligocene uplift was followed by rapid, early post-breakup subsidence (,30,18 Ma) possibly as the inferred induced convection abated following initial seafloor spreading. Rapid subsidence of the inner margin is interpreted as thermally controlled subsidence, whereas rapid subsidence in the outer shelf of the outer margin was accompanied by fault activity during the interval ,30,21 Ma. This extension in the outer margin (,,1.5) is manifested in the Tainan Basin, which formed on top of the deeply eroded Mesozoic basement. During the interval ,21,12.5 Ma, the entire margin experienced broad thermal subsidence. It was not until ,12.5 Ma that rifting resumed, being especially active in the Tainan Basin (,,1.1). Rifting ceased at ,6.5 Ma due to the orogeny caused by the overthrusting of the Luzon volcanic arc. The Taiwan orogeny created a foreland basin by loading and flexing the underlying rifted margin. The foreland flexure inherited the mechanical and thermal properties of the underlying rifted margin, thereby dividing the basin into north and south segments. The north segment developed on a lithosphere where the major rift/thermal event occurred ,58,30 Ma, and this segment shows minor normal faulting related to lithospheric flexure. In contrast, the south segment developed on a lithosphere, which experienced two more recent rift/thermal events during ,30,21 and ,12.5,6.5 Ma. The basal foreland surface of the south segment is highly faulted, especially along the previous northern rifted flank, thereby creating a deeper foreland flexure that trends obliquely to the strike of the orogen. [source] Structural Evolution of the Eastern Qiulitagh Fold and Thrust Belt, Northern Tarim Basin, ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2009Minghui YANG Abstract: The eastern Qiulitagh fold and thrust belt (EQFTB) is part of the active Kuqa fold and thrust belts of the northern Tarim Basin. Seismic reflection profiles have been integrated with surface geologic and drill data to examine the deformation and structure style of the EQFTB, particularly the deformational history of the Dina 2 gas field. Seismic interpretations suggest that Dongqiu 8 is overall a duplex structure developed beneath a passive roof thrust, which generated from a tipline in the Miocene Jidike Formation, and the sole thrust was initiated from the same Jidike Formation evaporite zone that extends westward beneath the Kuqatawu anticline. Dongqiu 5 is a pop-up structure at the western part of the EQFTB, also developed beneath the Jidike Formation evaporite. Very gentle basement dip and steep dipping topographic slope in the EQFTB suggest that the Jidike Formation salt provides effective decoupling. The strong deformation in the EQFTB appears to have developed further south, in an area where evaporite may be lacking. Since the Pliocene, the EQFTB has moved farther south over the evaporite and reached the Yaken area. Restoring a balanced cross-section suggests that the minimum shortening across the EQFTB is more than 7800 m. Assuming that this shortening occurred during the 5.3 Ma timespan, the shortening rate is approximately 1.47 mm/year. [source] Rapid seismic reflection imaging at the Clovis period Gault site in central TexasARCHAEOLOGICAL PROSPECTION, Issue 4 2007John A. Hildebrand Abstract Using a modified seismic reflection imaging system with rapid translation of receivers, stratigraphic profiles were collected at the Gault site in central Texas. For rapid data collection, spikeless geophone receivers were placed in sand-filled bags at tight spacing, and these receivers were rapidly pulled along the ground surface between shots. Shots were produced by a small hammer strike to a vertical pipe at 20-cm intervals. High quality ultrashallow seismic reflection profiles were collected at a rate of 25,m,h,1, significantly faster than what is possible with conventional seismic reflection imaging using individually planted geophones. Ground-penetrating radar was attempted, but abandoned owing to the poor penetration of the radar signals in the clay soils present at the Gault site. Electromagnetic induction grids were collected surrounding each seismic reflection profile, and provided information on near-surface ground water. Seismic reflection images of Gault site stratigraphy provided greater depth penetration than accessible from backhoe trenching and coring, and helped to better outline the site geological context. Seismic images reveal coherent reflections at shallow depths (0,2.5,m), and extensive scattering at deeper levels (2.5,8,m), underlain by reflection-free zones. These data are interpreted as clay and gravel layers overlaying palaeostream channels carved into the limestone bedrock. Where comparative data were available, the geophysical findings were corroborated by observations of site stratigraphy in archaeological excavation units, backhoe trenches and cores. Seismic reflection studies at the Gault site revealed a palaeochannel filled with pre-Clovis age sediments. Pre-Clovis age sediments are not known to occur at other locations within the Gault site. They provide a unique opportunity to test for cultural remains of great antiquity. Copyright © 2007 John Wiley & Sons, Ltd. [source] Geological evolution and structural style of the Palaeozoic Tafilalt sub-basin, eastern Anti-Atlas (Morocco, North Africa)GEOLOGICAL JOURNAL, Issue 1 2008E. A. Toto Abstract The Tafilalt is one of a number of generally unexplored sub-basins in the eastern Anti-Atlas of Morocco, all of which probably underwent a similar tectono-stratigraphic evolution during the Palaeozoic Era. Analysis of over 1000,km of 2-D seismic reflection profiles, with the interpretation of ten regional seismic sections and five isopach and isobath maps, suggests a multi-phase deformation history for the Palaeozoic-aged Tafilalt sub-basins. Extensional phases were probably initiated in the Cambrian, followed by uniform thermal subsidence up to at least the end of the Silurian. Major extension and subsidence did not begin prior to Middle/Upper Devonian times. Extensional movements on the major faults bounding the basin to the north and to the south took place in synchronisation with Upper Devonian sedimentation, which provides the thickest part of the sedimentary sequence in the basin. The onset of the compressional phase in Carboniferous times is indicated by reflectors in the Carboniferous sequence progressively onlapping onto the Upper Devonian sequence. This period of compression developed folds and faults in the Upper Palaeozoic-aged strata, producing a structural style characteristic of thin-skinned fold and thrust belts. The Late Palaeozoic units are detached over a regional décollement with a northward tectonic vergence. The folds have been formed by the process of fault-propagation folding related to the thrust imbricates that ramp up-section from the décollement. Copyright © 2007 John Wiley & Sons, Ltd. [source] Seismic constraints on the three-dimensional geometry of low-angle intracrustal reflectors in the Southern Iberia Abyssal PlainGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2008S. M. Dean SUMMARY Several lines of evidence suggest that simple shear rifting of the continental crust, in the form of low-angle detachment faulting, occurred during the final stages of continental breakup between West Iberia and the Grand Banks. The primary evidence for such faulting is the occurrence of low-angle, high amplitude reflectors within the basement adjacent to the ocean,continent transition zone. Here we present a series of intersecting, depth migrated seismic reflection profiles that image one such reflector, the H-reflector, located on the southern edge of Galicia Bank. ,H' lies beneath several boreholes drilled during ODP Legs 149 and 173, in a region where the oceanward extent of extended continental crust steps at least 150 km westward from its location in the southern Iberia Abyssal Plain to its location off the relatively shallow Galicia Bank. In our profiles ,H' appears to define a surface that extends over a region of at least 200 km2 and that dips down ,19° to the north, towards Galicia Bank. The profiles show that a close affinity exists between ,H' and the most seaward continental crust. Based on geophysical data and ODP drilling results, we infer that the basement above ,H' is composed of continental crust deformed by extensional faults into a series of wedge-shaped blocks and thin slivers. These basement wedges have a complex 3-D geometry. ,H' rises to the basement surface on a number of the seismic profiles and appears to define locally the oceanward extent of continental fault blocks. [source] Seafloor glacial features reveal the extent and decay of the last British Ice Sheet, east of Scotland,JOURNAL OF QUATERNARY SCIENCE, Issue 2 2009Alastair G. C. Graham Abstract Three-dimensional (3D) seismic datasets, 2D seismic reflection profiles and shallow cores provide insights into the geometry and composition of glacial features on the continental shelf, offshore eastern Scotland (58° N, 1,2° W). The relic features are related to the activity of the last British Ice Sheet (BIS) in the Outer Moray Firth. A landsystem assemblage consisting of four types of subglacial and ice marginal morphology is mapped at the seafloor. The assemblage comprises: (i) large seabed banks (interpreted as end moraines), coeval with the Bosies Bank moraine; (ii) morainic ridges (hummocky, push and end moraine) formed beneath, and at the margins of the ice sheet; (iii) an incised valley (a subglacial meltwater channel), recording meltwater drainage beneath former ice sheets; and (iv) elongate ridges and grooves (subglacial bedforms) overprinted by transverse ridges (grounding line moraines). The bedforms suggest that fast-flowing grounded ice advanced eastward of the previously proposed terminus of the offshore Late Weichselian BIS, increasing the size and extent of the ice sheet beyond traditional limits. Complex moraine formation at the margins of less active ice characterised subsequent retreat, with periodic stillstands and readvances. Observations are consistent with interpretations of a dynamic and oscillating ice margin during BIS deglaciation, and with an extensive ice sheet in the North Sea basin at the Last Glacial Maximum. Final ice margin retreat was rapid, manifested in stagnant ice topography, which aided preservation of the landsystem record. Copyright © 2008 John Wiley & Sons, Ltd. [source] Rapid seismic reflection imaging at the Clovis period Gault site in central TexasARCHAEOLOGICAL PROSPECTION, Issue 4 2007John A. Hildebrand Abstract Using a modified seismic reflection imaging system with rapid translation of receivers, stratigraphic profiles were collected at the Gault site in central Texas. For rapid data collection, spikeless geophone receivers were placed in sand-filled bags at tight spacing, and these receivers were rapidly pulled along the ground surface between shots. Shots were produced by a small hammer strike to a vertical pipe at 20-cm intervals. High quality ultrashallow seismic reflection profiles were collected at a rate of 25,m,h,1, significantly faster than what is possible with conventional seismic reflection imaging using individually planted geophones. Ground-penetrating radar was attempted, but abandoned owing to the poor penetration of the radar signals in the clay soils present at the Gault site. Electromagnetic induction grids were collected surrounding each seismic reflection profile, and provided information on near-surface ground water. Seismic reflection images of Gault site stratigraphy provided greater depth penetration than accessible from backhoe trenching and coring, and helped to better outline the site geological context. Seismic images reveal coherent reflections at shallow depths (0,2.5,m), and extensive scattering at deeper levels (2.5,8,m), underlain by reflection-free zones. These data are interpreted as clay and gravel layers overlaying palaeostream channels carved into the limestone bedrock. Where comparative data were available, the geophysical findings were corroborated by observations of site stratigraphy in archaeological excavation units, backhoe trenches and cores. Seismic reflection studies at the Gault site revealed a palaeochannel filled with pre-Clovis age sediments. Pre-Clovis age sediments are not known to occur at other locations within the Gault site. They provide a unique opportunity to test for cultural remains of great antiquity. Copyright © 2007 John Wiley & Sons, Ltd. [source] Frontal accretion and thrust wedge evolution under very oblique plate convergence: Fiordland Basin, New ZealandBASIN RESEARCH, Issue 4 2002P. M. Barnes ABSTRACT A thrust wedge with unusual geometry has developed under very oblique (50,60°) convergence between the Pacific and Australian Plates, along the 240-km length of the Fiordland margin, New Zealand. The narrow (25 km-wide) wedge comprises three overlapping components, lying west of the offshore section of the Alpine Fault, and straddles a change of > 30° in the regional strike of the plate boundary. Swath bathymetry, marine seismic reflection profiles, and dated samples together reveal the stratigraphy, structure, and evolution of the wedge and the underthrusting, continental, Caswell High (Australian Plate). Lateral variations in the composition and structure of the accretionary wedge, and the depth of the décollement thrust, result partly from variations in crustal structure and basement relief of the underthrust plate, and from associated variations in the thickness of turbidites available for frontal accretion. In the southern Fiordland Basin the underthrust plate is undergoing flexural uplift and extension, and a thick turbidite section is available for accretion. Along-strike, a structurally elevated portion of the underthrust plate is very obliquely colliding with the central part of the accretionary wedge, the turbidite section available for accretion is condensed, and structural inversion occurs in the underthrust plate. ,Growth of the thrust wedge is inferred to have commenced in the Pliocene prior to 3 ± 1 Ma, but much of the wedge developed in the Quaternary. The spatial distribution of thrusting has varied through time, with most late Quaternary shortening occurring on structures within 10 km of the right-stepping deformation front. Estimates of the magnitude and rates of deformation indicate that the wedge accommodates a significant component of the oblique convergence between the Pacific and Australian Plates. Shortening of up to 7.3 ± 1.4 km and 9.1 ± 1.8 km within the southern and central parts of the wedge, respectively, represent about 5,15% of the total 70,140 km of shortening predicted across the plate boundary since 6.4 Ma, and about 10,30% since 3 Ma. Late Quaternary shortening rates of the order of 1,5 mm yr,1, estimated across both the northern and southern parts of the wedge, represent about 10,50 and 5,21% of the total NUVEL-1 A shortening across the plate boundary at these respective latitudes, implying that most shortening is occurring onshore. Furthermore, possible oblique-slip thrusting within the wedge may be accommodating boundary-parallel displacement of 0,6 mm yr,1, representing 0,17% of the total predicted within the plate boundary. [source] |