Seismic Data (seismic + data)

Distribution by Scientific Domains

Selected Abstracts


M. K. Jenyon
Deciding on the viability of a salt deposit as a possible site for storage-cavern solution mining requires detailed geological studies of the salt and of its confining formations. Borehole data alone can seldom deliver the information required for such a study. It can impart great detail of the subsurface but only at the actual borehole location in an area. The most practical approach to developing 3D information is to carry out a seismic survey tied in to one or more boreholes which have been logged geophysically Ideally, a high-resolution seismic survey is needed to study relatively shallow zones of the subsurface and resolve the top and base of fairly thin beds. However in some cases it is possible to use "reach-me-down" seismic data acquired previously during hydrocarbon exploration. Although these data were not designed to meet the requirements of salt deposit studies, they may still be adequate for the purpose. Their use will lead to quicker and lower-cost results than the commissioning of a full field seismic survey with concomitant processing, although in both cases a seismic interpretation would be required. [source]

Wavefield Migration plus Monte Carlo Imaging of 3D Prestack Seismic Data

Ernesto Bonomi
ABSTRACT Prestack wave-equation migration has proved to be a very accurate shot-by-shot imaging tool. However, 3D imaging with this technique of a large field acquisition, especially one with hundreds of thousands of shots, is prohibitively costly. Simply adapting the technique to migrate many superposed shot-gathers simultaneously would render 3D wavefield prestack migration cost-effective but it introduces uncontrolled non-physical interference among the shot-gathers, making the final image useless. However, it has been observed that multishot signal interference can be kept under some control by averaging over many such images, if each multishot migration is modified by a random phase encoding of the frequency spectra of the seismic traces. In this article, we analyse this technique, giving a theoretical basis for its observed behaviour: that the error of the image produced by averaging over M phase encoded migrations decreases as M,1. Furthermore, we expand the technique and define a general class of Monte-Carlo encoding methods for which the noise variance of the average imaging condition decreases as M,1; these methods thus all converge asymptotically to the correct reflectivity map, without generating prohibitive costs. The theoretical asymptotic behaviour is illustrated for three such methods on a 2D test case. Numerical verification in 3D is then presented for one such method implemented with a 3D PSPI extrapolation kernel for two test cases: the SEG,EAGE salt model and a real test constructed from field data. [source]

Lithospheric structure of an active backarc basin: the Taupo Volcanic Zone, New Zealand

Antony Harrison
SUMMARY Seismic data from both explosive and earthquake sources have been used to model the crustal and upper-mantle velocity structure beneath the Taupo Volcanic Zone (TVZ), an active backarc basin in central North Island, New Zealand. Volcanic sediments with P -wave velocities of 2.0,3.5 km s,1 reach a maximum thickness of 3 km beneath the central TVZ. Underlying these sediments to 16 km depth is material with velocities of 5.0,6.5 km s,1, interpreted as quartzo-feldspathic crust. East and west of the TVZ, crust with similar velocities is found to depths of 30 and 25 km, respectively. Beneath the TVZ, material with P -wave velocities of 6.9,7.3 km s,1 is found from 16 to 30 km depth and is interpreted as heavily intruded or underplated lower crust. The base of the crust at 30 km depth under the TVZ is marked by a strong seismic reflector, interpreted as the Moho. Modelling of arrivals from deep (>40 km) earthquakes near the top of the underlying subducting Pacific Plate reveals a region with low mantle velocities of 7.4,7.8 km s,1 beneath the crust of the TVZ. This region of low mantle velocities is best explained by the presence of partially hydrated upper mantle, resulting from dehydration of hydrous minerals (e.g. serpentinite) carried down by the underlying subducting plate. Within the lower crust beneath the TVZ, a region of high (0.34) Poisson's ratio is observed, indicating the presence of at least 1 per cent partial melt. This melt probably fractionates and assimilates crustal material before some of it migrates into the upper crust, where it provides a source for the voluminous rhyolitic magmas of the TVZ. [source]

Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region

BASIN RESEARCH, Issue 4 2003
A. T. Lin
Seismic reflection profiles and well data are used to determine the Cenozoic stratigraphic and tectonic development of the northern margin of the South China Sea. In the Taiwan region, this margin evolved from a Palaeogene rift to a latest Miocene,Recent foreland basin. This evolution is related to the opening of the South China Sea and its subsequent partial closure by the Taiwan orogeny. Seismic data, together with the subsidence analysis of deep wells, show that during rifting (,58,37 Ma), lithospheric extension occurred simultaneously in discrete rift belts. These belts form a >200 km wide rift zone and are associated with a stretching factor, ,, in the range ,1.4,1.6. By ,37 Ma, the focus of rifting shifted to the present-day continent,ocean boundary off southern Taiwan, which led to continental rupture and initial seafloor spreading of the South China Sea at ,30 Ma. Intense rifting during the rift,drift transition (,37,30 Ma) may have induced a transient, small-scale mantle convection beneath the rift. The coeval crustal uplift (Oligocene uplift) of the previously rifted margin, which led to erosion and development of the breakup unconformity, was most likely caused by the induced convection. Oligocene uplift was followed by rapid, early post-breakup subsidence (,30,18 Ma) possibly as the inferred induced convection abated following initial seafloor spreading. Rapid subsidence of the inner margin is interpreted as thermally controlled subsidence, whereas rapid subsidence in the outer shelf of the outer margin was accompanied by fault activity during the interval ,30,21 Ma. This extension in the outer margin (,,1.5) is manifested in the Tainan Basin, which formed on top of the deeply eroded Mesozoic basement. During the interval ,21,12.5 Ma, the entire margin experienced broad thermal subsidence. It was not until ,12.5 Ma that rifting resumed, being especially active in the Tainan Basin (,,1.1). Rifting ceased at ,6.5 Ma due to the orogeny caused by the overthrusting of the Luzon volcanic arc. The Taiwan orogeny created a foreland basin by loading and flexing the underlying rifted margin. The foreland flexure inherited the mechanical and thermal properties of the underlying rifted margin, thereby dividing the basin into north and south segments. The north segment developed on a lithosphere where the major rift/thermal event occurred ,58,30 Ma, and this segment shows minor normal faulting related to lithospheric flexure. In contrast, the south segment developed on a lithosphere, which experienced two more recent rift/thermal events during ,30,21 and ,12.5,6.5 Ma. The basal foreland surface of the south segment is highly faulted, especially along the previous northern rifted flank, thereby creating a deeper foreland flexure that trends obliquely to the strike of the orogen. [source]

Lithology and fluid prediction from amplitude versus offset (AVO) seismic data

D. J. Davies
Abstract Seismic reflection data as used in the oil industry is acquired and processed as multitrace data with source-receiver offsets from a few hundred metres (short offset) to several kilometres (long offset). This set of data is referred to as ,pre-stack'. The traces are processed by velocity analysis, migration and stacking to yield a data volume of traces with ,zero-offset'. The signal-to-noise enhancement resulting from this approach is very significant. However, reflection amplitude changes in the pre-stack domain may also be analysed to yield enhanced rock physics parameter estimates. Pre-stack seismic data is widely used to predict lithology, reservoir quality and fluid distribution in exploration and production studies. Amplitude versus offset (AVO) data, especially anomalous signals, have been used for decades as indicators of hydrocarbon saturation and favourable reservoir development. Recently, enhanced quantification of these types of measurement, using seismic inversion techniques in the pre-stack domain, have significantly enhanced the utility of such measurements. Using these techniques, for example, probability of the occurrence of hydrocarbons throughout the seismic data can be estimated, and as a consequence the many pre-stack volumes acquired in a three-dimensional (3D) can be survey, reduced to a single, more interpretable volume. The possibilities of 4D time lapse observation extend the measurements to changes in fluid content (and pressure) with time, and with obvious benefits in establishing the accuracy of dynamic reservoir models and improvements in field development planning. As an illustration, recent results from the Nelson Field (UK North Sea), are presented where we show the method by which probability volumes for oil sands may be calculated. The oil,sand probability volumes for three 3D seismic datasets acquired in 1990, 1997 and 2000 are compared and production effects in these data are demonstrated. [source]

From the intra-desert ridges to the marine carbonate island chain: middle to late Permian (Upper Rotliegend,Lower Zechstein) of the Wolsztyn,Pogorzela high, west Poland

Hubert Kiersnowski
Abstract The tectonic Wolsztyn,Pogorzela palaeo-High (WPH) is the south-eastern termination of the Brandenburg,Wolsztyn High (western Poland), which during Late Permian times was an intra-basin ridge surrounded by Upper Rotliegend sedimentary basins within the Southern Permian Basin. The geological history and structural framework of the WPH are complex. The High belongs to the Variscan Externides, consisting at present of strongly folded, faulted and eroded Viséan to Namurian flysch deposits capped by a thick cover of Upper Carboniferous,Lower Permian volcanic rocks. This sedimentary-volcanic complex was strongly fragmented and vertically differentiated by tectonic movements and subsequently eroded, resulting in the deposition of coarse clastics surrounding uplifted tectonic blocks. During late Rotliegend time, arid climatic conditions significantly influenced occurrences of specific facies assemblages: alluvial, fluvial, aeolian and playa. Sedimentological study helped to recognize the interplay of tectonic and palaeoclimatic factors and to understand the phenomenon of aeolian sandstones interbedded with coarse deposits of alluvial cones close to fault scarps. Subsequent tectonic and possible thermal subsidence of the studied area was synchronous with inundation by the Zechstein Sea. The rapid inundation process allowed for the preservation of an almost perfectly protected Uppermost Rotliegend landscape. Based on 3D seismic data from the base Zechstein reflector, a reconstruction of Rotliegend palaeogeomorphology was carried out, which shows examples of tectonic rejuvenation of particular tectonic blocks within the WPH area before inundation by the Zechstein Sea. The inundation led to the deposition of the marine Kupferschiefer Shale followed by the Zechstein Limestone. In the deeper parts of the basin the latter is developed in thin basinal facies: in shallow parts (e.g. uplifted tectonic blocks forming in some cases islands), carbonate buildups were formed. The remarkable thickness of those buildups (bryozoan reefs) is interpreted as due to stable tectonic subsidence together with a rise of sea level. A detailed study of carbonate buildups has showed that their internal structure reflects changes in shallow marine environments and even emersion events, caused by sea-level oscillations and tectonic movements of the reef substrate. Copyright © 2010 John Wiley & Sons, Ltd. [source]

Theoretical and Applied Case Studies of Seismic Imaging in Tunnelling

Thomas Dickmann Dr.
Seismic measurements during tunnel operations aim at images of maximum spatial resolution. However, there are still principal limitations of the method applied in the tunnel with regard to spatial resolution by the signal frequency and attenuation and by the small angular illumination coverage. A finite-difference simulation of elastic wave propagation had been performed to compute a synthetic tunnel seismic reflection survey. Synthetic data are used optimizing the best practice tunnel data processing sequence for both P- and S-waves because every step between the acquisition of the seismic data and the derivation of the final image influences the final seismic resolution. Here, especially the use of attenuation models compensate amplitude loss as well as dispersion by an inverse Q-filtering and the use of a spatially variable velocity model yielding the right image position of a reflecting geological element in space. The transfer and capability of this practice to real tunnel application is finally demonstrated by the case study of the tunnel seismic prediction method in the Koralm tunnel project in Austria. Theoretische und praktische Fallbeispiele der seismischen Abbildung im Tunnelbau Seismische Messungen während der Tunnelbauausführungen sollen eine Abbildung von maximaler räumlicher Auflösung erzielen. Allerdings gibt es immer noch grundsätzliche Einschränkungen hinsichtlich räumlicher Auflösung aufgrund von Signalfrequenz und -dämpfung und aufgrund des eingeschränkten Winkelbereichs des Beleuchtungsraums, wenn die Methode aus dem Tunnel heraus nach vorne angewendet wird. Es wurde eine Finite-Differenzen Simulation der elastischen Wellenausbreitung durchgeführt, um synthetische tunnelseismische Reflexionsdaten zu erhalten. Diese synthetischen Daten dienten dazu, die optimale Bearbeitungsfolge von P- und S-Wellendaten aus dem Tunnel abzuleiten, da jeder einzelne Bearbeitungsschritt zwischen der seismischen Datenaufnahme und der Endabbildung die endgültige seismische Auflösung beeinflusst. Hierbei kompensiert besonders die Anwendung eines Dämpfungsmodels mittels eines inversen Q-Filters und eines räumlich variablen Geschwindigkeitsmodels den Verlust von Amplitudenstärke und die Dispersion, was zu einer richtigen räumlichen Abbildungsposition des Reflektors eines geologischen Elementes führt. Die Leistungsfähigkeit dieser Vorgehensweise und deren Übertragung auf die wirkliche Tunnelanwendung werden schließlich durch das Beispiel der tunnelseismischen Vorauserkundung am Koralmtunnel in Österreich demonstriert. [source]

A correlation-based misfit criterion for wave-equation traveltime tomography

T. Van Leeuwen
SUMMARY Wave-equation traveltime tomography tries to obtain a subsurface velocity model from seismic data, either passive or active, that explains their traveltimes. A key step is the extraction of traveltime differences, or relative phase shifts, between observed and modelled finite-frequency waveforms. A standard approach involves a correlation of the observed and measured waveforms. When the amplitude spectra of the waveforms are identical, the maximum of the correlation is indicative of the relative phase shift. When the amplitude spectra are not identical, however, this argument is no longer valid. We propose an alternative criterion to measure the relative phase shift. This misfit criterion is a weighted norm of the correlation and is less sensitive to differences in the amplitude spectra. For practical application it is important to use a sensitivity kernel that is consistent with the way the misfit is measured. We derive this sensitivity kernel and show how it differs from the standard banana,doughnut sensitivity kernel. We illustrate the approach on a cross-well data set. [source]

High-resolution seismic imaging in deep sea from a joint deep-towed/OBH reflection experiment: application to a Mass Transport Complex offshore Nigeria

S. Ker
SUMMARY We assess the feasibility of high-resolution seismic depth imaging in deep water based on a new geophysical approach involving the joint use of a deep-towed seismic device (SYSIF) and ocean bottom hydrophones (OBHs). Source signature measurement enables signature deconvolution to be used to improve the vertical resolution and signal-to-noise ratio. The source signature was also used to precisely determine direct traveltimes that were inverted to relocate source and receiver positions. The very high accuracy of the positioning that was obtained enabled depth imaging and a stack of the OBH data to be performed. The determination of the P -wave velocity distribution was realized by the adaptation of an iterative focusing approach to the specific acquisition geometry. This innovative experiment combined with advanced processing succeeded in reaching lateral and vertical resolution (2.5 and 1 m) in accordance with the objectives of imaging fine scale structures and correlation with in situ measurements. To illustrate the technological and processing advances of the approach, we present a first application performed during the ERIG3D cruise offshore Nigeria with the seismic data acquired over NG1, a buried Mass Transport Complex (MTC) interpreted as a debris flow by conventional data. Evidence for a slide nature of a part of the MTC was provided by the high resolution of the OBH depth images. Rigid behaviour may be inferred from movement of coherent material inside the MTC and thrust structures at the base of the MTC. Furthermore, a silt layer that was disrupted during emplacement but has maintained its stratigraphic position supports a short transport distance. [source]

Uplift at lithospheric swells,I: seismic and gravity constraints on the crust and uppermost mantle structure of the Cape Verde mid-plate swell

D. J. Wilson
SUMMARY Wide-angle seismic data have been used to determine the velocity and density structure of the crust and uppermost mantle beneath the Cape Verdes mid-plate swell. Seismic modelling reveals a ,standard' oceanic crust, ,8 km in thickness, with no direct evidence for low-density bodies at the base of the crust. Gravity anomaly modelling within the constraints and resolution provided by the seismic model, does not preclude, however, a layer of crustal underplate up to 3 km thick beneath the swell crest. The modelling shows that while the seismically constrained crustal structure accounts for the short-wavelength free-air gravity anomaly, it fails to fully explain the long-wavelength anomaly. The main discrepancy is over the swell crest where the gravity anomaly, after correcting for crustal structure, is higher by about 30 mGal than it is over its flanks. The higher gravity can be explained if the top 100 km of the mantle beneath the swell crest is less dense than its surroundings by 30 kg m,3. The lack of evidence for low densities and velocities in the uppermost mantle, and high densities and velocities in the lower crust, suggests that neither a depleted swell root or crustal underplate are the origin of the observed shallower-than-predicted bathymetry and that, instead, the swell is most likely supported by dynamic uplift associated with an anomalously low density asthenospheric mantle. [source]

Imaging fractures and sedimentary fabrics using shear wave splitting measurements made on passive seismic data

J. P. Verdon
SUMMARY The ability to detect aligned fractures using seismic anisotropy provides a valuable tool for exploiting hydrocarbon reservoirs better. Perhaps the most direct way of identifying anisotropy is by observing shear wave splitting. However, the interaction of shear waves with subsurface structure is often complicated. Although fractures in hydrocarbon reservoirs are usually subvertical, shear waves recorded on downhole receivers from microseismic events in or near the reservoir are not likely to have travelled vertically. As such, interpreting splitting measurements made on such waves is a non-trivial problem. Here we develop an approach to model the effects of subsurface structure on non-vertically propagating shear waves. Rock physics theory is used to model the effects of sedimentary fabrics as well as fractures, allowing us to use shear wave splitting measurements to invert for aligned fractures. We use synthetic examples to demonstrate how it is possible to assess in advance how well splitting measurements will image structures, and how this is highly dependent on the available range of ray coverage. Finally, we demonstrate the inversion technique on a passive seismic data set collected during hydraulic fracture stimulation. Despite an unfavourable source,receiver geometry, the strike of an aligned fracture set is accurately identified. [source]

Monitoring in situ stress changes in a mining environment with coda wave interferometry

Alexandre Grêt
SUMMARY Coda waves are highly sensitive to changes in the subsurface; we use this sensitivity to monitor small stress changes in an underground mine. We apply coda wave interferometry to seismic data excited by a hammer source, collected at an experimental hard rock mine in Idaho Springs, CO. We carried out a controlled stress-change experiment in a mine pillar and we show how coda wave interferometry can be used to monitor the in situ stress change with modest hardware requirements. [source]

The influence of fluid-sensitive dispersion and attenuation on AVO analysis

Mark Chapman
SUMMARY Analysis of seismic data suggests that hydrocarbon deposits are often associated with higher than usual values of attenuation, but this is generally ignored during amplitude-versus-offset (AVO) analysis. The effect can be modelled with equivalent medium theory based on the squirt flow concept, but the excess attenuation is associated with strong velocity dispersion. Consequently, when we study reflections from the interface between such an equivalent medium and an elastic overburden we find that the reflection coefficient varies with frequency. The impact of this variation depends on the AVO behaviour at the interface; class I reflections tend to be shifted to higher frequency while class III reflections have their lower frequencies amplified. We calculate synthetic seismograms for typical models using the reflectivity method for materials with frequency dependent velocities and attenuations, and find that these effects are predicted to be detectable on stacked data. Two field data sets show frequency anomalies similar to those predicted by the analysis, and we suggest that our modelling provides a plausible explanation of the observations. [source]

The sedimentary structure of the Lomonosov Ridge between 88°N and 80°N

Wilfried Jokat
SUMMARY While the origin of the 1800-km-long Lomonosov Ridge (LR) in the Central Arctic Ocean is believed to be well understood, details on the bathymetry and especially on the sediment and crustal structure of this unique feature are sparse. During two expeditions in 1991 and 1998 into the Central Arctic Ocean several high quality seismic lines were collected along the margin of the ridge and in the adjacent Makarov Basin (MB). The lines collected between 87°36,N and 80°N perpendicular to and along the LR show a sediment starved continental margin with a variety of geological structures. The different features may reflect the different geological histories of certain ridge segments and/or their different subsidence histories. The sediments in the deep MB have thicknesses up to 2.2 km (3 s TWT) close to the foot of the ridge. At least in part basement reflections characteristics suggest oceanic crust. The acoustically stratified layers are flat lying, except in areas close to the ridge. Seismic units on the LR can be divided into two units based on refraction velocity data and the internal geometry of the reflections. Velocities <3.0 km s,1 are considered to represent Cenozoic sediments deposited after the ridge subsided below sea level. Velocities >4.0 km s,1 are associated with faulted sediments at deeper levels and may represent acoustic basement, which was affected by the Late Cretaceous/Early Cenozoic rift events. Along large parts of the ridge the transition of the two units is associated with an erosional unconformity. Close to the Laptev Sea such an erosional surface may not be present, because of the initial great depths of the rocks. Here, the deeper strata are affected by tectonism, which suggests some relative motion between the LR and the Laptev Shelf. Stratigraphic correlation with the Laptev Sea Shelf suggests that the ridge has not moved as a separate plate over the past 10 Myr. The seismic and regional gravity data indicate that the ridge broadens towards the Laptev Shelf. Although the deeper structure may be heavily intruded and altered, the LR appears to extend eastwards as far as 155°E, a consequence of a long-lived Late Cretaceous rift event. The seismic data across LR support the existence of iceberg scours in the central region of the ridge as far south as 81°N. However, no evidence for a large erosional events due to a more than 1000-m-thick sea ice cover is visible from the data. South of 85°N the seismic data indicate the presence of a bottom simulating reflector along all lines. [source]

Crosswell seismic waveguide phenomenology of reservoir sands & shales at offsets >600 m, Liaohe Oil Field, NE China

P. C. Leary
SUMMARY Crosswell seismic data recorded at 620,650 m offsets in an oil-bearing sand/shale reservoir formation at the Liaohe Oil Field, northeast China, provide robust evidence for waveguide action by low-velocity reservoir layers. Crosswell-section velocity models derived from survey-well sonic logs and further constrained by observed waveguide seismic wavegroup amplitudes and phases yield plausible evidence for interwell reservoir,sand continuity and discontinuity. A pair of back-to-back Liaohe crosswell vector-seismic surveys were conducted using a source well between two sensor wells at 650 and 620 m offsets along a 200-m-thick reservoir formation dipping 7° down-to-east between depths of 2.5 and 3 km. A downhole orbital vibrator generated seismic correlation wavelets with frequency range 50,350 Hz and signal/noise ratio up to 5:1 over local downhole ambient noise. The sensor wells were instrumented with a mobile 12- to 16-level string of clamped vector-motion sensor modules at 5 m intervals. Using 5 m source depth increments, crosswell Surveys 1 and 2 cover source/sensor well intervals above and through the reservoir of, respectively, 600 m/600 m (13 000 vector traces in 9 common sensor fans) and 300 m/560 m (7000 vector traces in 7 common sensor fans). Survey 1 common sensor gathers show clear, consistent high-amplitude 20 ms waveletgroup lags behind the first-arrival traveltime envelope. Such arrivals are diagnostic of seismic low-velocity waveguides connecting the source and sensor wells. Observed Survey 1 retarded wavegroup depths tally with source and sensor depths in low-velocity layers identified in sonic well logs. Finite-difference acoustic model wavefields computed for waveguide acoustic layers constrained by well-log sonic velocity data match the observed waveguide traveltime and amplitude systematics. Model waveforms duplicate the observed m-scale and ms-scale sensitivity of waveguide spatio-temporal energy localization. Survey 2 crosswell data, in contrast, provide no comparable evidence for waveguide action despite a sensor-well sonic well log similar to that of Survey 1. Instead, acoustic wavefield modelling of Survey 2 data clearly favours an interpreted waveguide model with 10° downdip interrupted by a 75,100 m throw down-fault near the sensor well. The absence of clear waveguide arrivals is adequately explained by dispersal of waveguide energy at the fault discontinuity. Auxiliary well sonic velocity and lithologic logs confirm the model-implied 75,100 m of down-throw faulting near the sensor well. [source]

Optimal measurement of relative and absolute delay times by simulated annealing

S. Chevrot
Summary Conventional approaches to determine relative arrival times of body waves recorded by a local or a regional array rely on cross-correlations between pairs of traces. This problem is better posed as a non-linear inverse problem, which involves the minimization of a cost function that measures the difference between a reference unknown waveform that can be time delayed, and the observed data. The unknown parameters that are solved for, are the amplitude values at each time sample of the optimal waveform and its time delay defined for each trace. The problem, which has a large number of unknown parameters, is solved with simulated annealing. The algorithm is very efficient and can be used for a routine analysis of seismic data. The application of this method to several earthquakes recorded during different PASSCAL experiments demonstrates that it provides accurate and robust differential traveltime measurements even with very noisy data. [source]

Regional GPS data confirm high strain accumulation prior to the 2000 June 4 Mw= 7.8 earthquake at southeast Sumatra

G. W. Michel
Summary Site velocities derived from repeated measurements in a regional GPS network in Southeast Asia help to constrain the motion of tectonic blocks as well as slip rates along major faults in the area. Using 3-D forward dislocation modelling, the influence of seismic elastic loading and unloading on the measured site motions are approximated. Results suggest that the northwestern Sunda arc is fully coupled seismogenically, whereas its eastern part along Java shows localized deformation. Higher horizontal velocity gradients than expected from the modelling of a fully coupled plate interface west of Manila in the Philippines suggest that deformation may be localized there. Assuming that geodetically derived convergence represents long-term rates, accumulated geodetic moments are compared to those derived using seismic data from 1977 to 2000 (Harvard CMT catalogue). If areas displaying localized deformation are dominated by creep processes, the largest difference between accumulated and seismically released deformation is located where the 2000 June 4 Mw = 7.8 Sumatra earthquake occurred. [source]

Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data

W. Zhao
Summary In the summer of 1998, project INDEPTH recorded a 400 km long NNW,SSE wide-angle seismic profile in central Tibet, from the Lhasa terrane across the Banggong-Nujiang suture (BNS) at about 89.5°E and into the Qiangtang terrane. Analysis of the P- wave data reveals that (1) the crustal thickness is 65 ± 5 km beneath the line; (2) there is no 20 km step in the Moho in the vicinity of the BNS, as has been suggested to exist along-strike to the east based on prior fan profiling; (3) a thick high-velocity lower crustal layer is evident along the length of the profile (20,35 km thick, 6.5,7.3 km s,1); and (4) in contrast to the southern Lhasa terrane, there is no obvious evidence of a mid-crustal low-velocity layer in the P- wave data, although the data do not negate the possibility of such a layer of modest proportions. Combining the results from the INDEPTH III wide-angle profile with other seismic results allows a cross-section of Moho depths to be constructed across Tibet. This cross-section shows that crustal thickness tends to decrease from south to north, with values of 70,80 km south of the middle of the Lhasa terrane, 60,70 km in the northern part of the Lhasa terrane and the Qiangtang terrane, and less than 60 km in the Qaidam basin. The overall northward thinning of the crust evident in the combined seismic observations, coupled with the essentially uniform surface elevation of the plateau south of the Qaidam basin, is supportive of the inference that northern Tibet until the Qaidam basin is underlain by somewhat thinner crust, which is isostatically supported by relatively low-density, hot upper mantle with respect to southern Tibet. [source]

Shallow velocity structure along the Hirapur,Mandla profile using traveltime inversion of wide-angle seismic data, and its tectonic implications

Kalachand Sain
In order to investigate the velocity structure, and hence shed light on the related tectonics, across the Narmada,Son lineament, traveltimes of wide-angle seismic data along the 240 km long Hirapur,Mandla profile in central India have been inverted. A blocky, laterally heterogeneous, three-layer velocity model down to a depth of 10 km has been derived. The first layer shows a maximum thickness of the upper Vindhyans (4.5 km s,1,) of about 1.35 km and rests on top of normal crystalline basement, represented by the 5.9 km s,1 velocity layer. The anomalous feature of the study is the absence of normal granitic basement in the great Vindhyan Graben, where lower Vindhyan sediments (5.3 km s,1,) were deposited during the Precambrian on high-velocity (6.3 km s,1,) metamorphic rock. The block beneath the Narmada,Son lineament represents a horst feature in which high-velocity (6.5 km s,1,) lower crustal material has risen to a depth of less than 2 km. South of the lineament, the Deccan Traps were deposited on normal basement during the upper Cretaceous period and attained a maximum thickness of about 800 m. [source]

Sequential integrated inversion of refraction and wide-angle reflection traveltimes and gravity data for two-dimensional velocity structures

Rosaria Tondi
A new algorithm is presented for the integrated 2-D inversion of seismic traveltime and gravity data. The algorithm adopts the ,maximum likelihood' regularization scheme. We construct a ,probability density function' which includes three kinds of information: information derived from gravity measurements; information derived from the seismic traveltime inversion procedure applied to the model; and information on the physical correlation among the density and the velocity parameters. We assume a linear relation between density and velocity, which can be node-dependent; that is, we can choose different relationships for different parts of the velocity,density grid. In addition, our procedure allows us to consider a covariance matrix related to the error propagation in linking density to velocity. We use seismic data to estimate starting velocity values and the position of boundary nodes. Subsequently, the sequential integrated inversion (SII) optimizes the layer velocities and densities for our models. The procedure is applicable, as an additional step, to any type of seismic tomographic inversion. We illustrate the method by comparing the velocity models recovered from a standard seismic traveltime inversion with those retrieved using our algorithm. The inversion of synthetic data calculated for a 2-D isotropic, laterally inhomogeneous model shows the stability and accuracy of this procedure, demonstrates the improvements to the recovery of true velocity anomalies, and proves that this technique can efficiently overcome some of the limitations of both gravity and seismic traveltime inversions, when they are used independently. An interpretation of field data from the 1994 Vesuvius test experiment is also presented. At depths down to 4.5 km, the model retrieved after a SII shows a more detailed structure than the model obtained from an interpretation of seismic traveltime only, and yields additional information for a further study of the area. [source]

Synthesis of a seismic virtual reflector,

Flavio Poletto
ABSTRACT We describe a method to process the seismic data generated by a plurality of sources and registered by an appropriate distribution of receivers, which provides new seismic signals as if in the position of the receivers (or sources) there was an ideal reflector, even if this reflector is not present there. The data provided by this method represent the signals of a virtual reflector. The proposed algorithm performs the convolution and the subsequent sum of the real traces without needing subsurface model information. The approach can be used in combination with seismic interferometry to separate wavefields and process the reflection events. The application is described with synthetic examples, including stationary phase analysis and with real data in which the virtual reflector signal can be appreciated. [source]

Seismic data reconstruction using multidimensional prediction filters

M. Naghizadeh
ABSTRACT In this paper we discuss a beyond-alias multidimensional implementation of the multi-step autoregressive reconstruction algorithm for data with missing spatial samples. The multi-step autoregressive method is summarized as follows: vital low-frequency information is first regularized adopting a Fourier based method (minimum weighted norm interpolation); the reconstructed data are then used to estimate prediction filters that are used to interpolate higher frequencies. This article discusses the implementation of the multi-step autoregressive method to data with more than one spatial dimension. Synthetic and real data examples are used to examine the performance of the proposed method. Field data are used to illustrate the applicability of multidimensional multi-step autoregressive operators for regularization of seismic data. [source]

Lithology and hydrocarbon mapping from multicomponent seismic data

Hüseyin Özdemir
ABSTRACT Elastic rock properties can be estimated from prestack seismic data using amplitude variation with offset analysis. P-wave, S-wave and density ,reflectivities', or contrasts, can be inverted from angle-band stacks. The ,reflectivities' are then inverted to absolute acoustic impedance, shear impedance and density. These rock properties can be used to map reservoir parameters through all stages of field development and production. When P-wave contrast is small, or gas clouds obscure reservoir zones, multicomponent ocean-bottom recording of converted-waves (P to S or Ps) data provides reliable mapping of reservoir boundaries. Angle-band stacks of multicomponent P-wave (Pz) and Ps data can also be inverted jointly. In this paper Aki-Richards equations are used without simplifications to invert angle-band stacks to ,reflectivities'. This enables the use of reflection seismic data beyond 30° of incident angles compared to the conventional amplitude variation with offset analysis. It, in turn, provides better shear impedance and density estimates. An important input to amplitude variation with offset analysis is the Vs/Vp ratio. Conventional methods use a constant or a time-varying Vs/Vp model. Here, a time- and space-varying model is used during the computation of the ,reflectivities'. The Vs/Vp model is generated using well log data and picked horizons. For multicomponent data applications, the latter model can also be generated from processing Vs/Vp models and available well data. Reservoir rock properties such as ,,, ,,, Poisson's ratio and bulk modulus can be computed from acoustic impedance, shear impedance and density for pore fill and lithology identification. , and , are the Lamé constants and , is density. These estimations can also be used for a more efficient log property mapping. Vp/Vs ratio or Poisson's ratio, ,, and weighted stacks, such as the one computed from ,, and ,/,, are good gas/oil and oil/water contact indicators, i.e., pore fill indicators, while ,, mainly indicates lithology. ,, is also affected by pressure changes. Results from a multicomponent data set are used to illustrate mapping of gas, oil and water saturation and lithology in a Tertiary sand/shale setting. Whilst initial log crossplot analysis suggested that pore fill discrimination may be possible, the inversion was not successful in revealing fluid effects. However, rock properties computed from acoustic impedance, shear impedance and density estimates provided good lithology indicators; pore fill identification was less successful. Neural network analysis using computed rock properties provided good indication of sand/shale distribution away from the existing wells and complemented the results depicted from individual rock property inversions. [source]

Fast free surface multiples attenuation workflow for three-dimensional ocean bottom seismic data

Bärbel Traub
ABSTRACT Water multiples can be very strong and contaminate the primary reflections. This can cause problems in the processing flow and the interpretation of the subsurface image. Hence, multiples suppression is an important part of the preprocessing flow. We present a fast workflow for attenuation of free surface related multiples for 2D and 3D ocean bottom seismic data based on the wave equation approach. Included in the workflow are: 1. Calibration of the pressure and vertical velocity components by using wavefield splitting. 2. Data interpolation by using offset projection. 3. Fast Radon transform by using fast fractional Fourier transform. Advantages of this workflow are that it is fast, efficient and the only requirements are the recording of both pressure and vertical particle components at some point below the source in the water column. [source]

A hybrid fast algorithm for first arrivals tomography

Manuela Mendes
ABSTRACT A hybrid algorithm, combining Monte-Carlo optimization with simultaneous iterative reconstructive technique (SIRT) tomography, is used to invert first arrival traveltimes from seismic data for building a velocity model. Stochastic algorithms may localize a point around the global minimum of the misfit function but are not suitable for identifying the precise solution. On the other hand, a tomographic model reconstruction, based on a local linearization, will only be successful if an initial model already close to the best solution is available. To overcome these problems, in the method proposed here, a first model obtained using a classical Monte Carlo-based optimization is used as a good initial guess for starting the local search with the SIRT tomographic reconstruction. In the forward problem, the first-break times are calculated by solving the eikonal equation through a velocity model with a fast finite-difference method instead of the traditional slow ray-tracing technique. In addition, for the SIRT tomography the seismic energy from sources to receivers is propagated by applying a fast Fresnel volume approach which when combined with turning rays can handle models with both positive and negative velocity gradients. The performance of this two-step optimization scheme has been tested on synthetic and field data for building a geologically plausible velocity model. This is an efficient and fast search mechanism, which permits insertion of geophysical, geological and geodynamic a priori constraints into the grid model and ray path is completed avoided. Extension of the technique to 3D data and also to the solution of ,static correction' problems is easily feasible. [source]

Migration velocity analysis for tilted transversely isotropic media

Laxmidhar Behera
ABSTRACT Tilted transversely isotropic formations cause serious imaging distortions in active tectonic areas (e.g., fold-and-thrust belts) and in subsalt exploration. Here, we introduce a methodology for P-wave prestack depth imaging in tilted transversely isotropic media that properly accounts for the tilt of the symmetry axis as well as for spatial velocity variations. For purposes of migration velocity analysis, the model is divided into blocks with constant values of the anisotropy parameters , and , and linearly varying symmetry-direction velocity VP0 controlled by the vertical (kz) and lateral (kx) gradients. Since determination of tilt from P-wave data is generally unstable, the symmetry axis is kept orthogonal to the reflectors in all trial velocity models. It is also assumed that the velocity VP0 is either known at the top of each block or remains continuous in the vertical direction. The velocity analysis algorithm estimates the velocity gradients kz and kx and the anisotropy parameters , and , in the layer-stripping mode using a generalized version of the method introduced by Sarkar and Tsvankin for factorized transverse isotropy with a vertical symmetry axis. Synthetic tests for several models typical in exploration (a syncline, uptilted shale layers near a salt dome and a bending shale layer) confirm that if the symmetry-axis direction is fixed and VP0 is known, the parameters kz, kx, , and , can be resolved from reflection data. It should be emphasized that estimation of , in tilted transversely isotropic media requires using nonhyperbolic moveout for long offsets reaching at least twice the reflector depth. We also demonstrate that application of processing algorithms designed for a vertical symmetry axis to data from tilted transversely isotropic media may lead to significant misfocusing of reflectors and errors in parameter estimation, even when the tilt is moderate (30°). The ability of our velocity analysis algorithm to separate the anisotropy parameters from the velocity gradients can be also used in lithology discrimination and geologic interpretation of seismic data in complex areas. [source]

Velocity analysis based on data correlation

T. Van Leeuwen
ABSTRACT Several methods exist to automatically obtain a velocity model from seismic data via optimization. Migration velocity analysis relies on an imaging condition and seeks the velocity model that optimally focuses the migrated image. This approach has been proven to be very successful. However, most migration methods use simplified physics to make them computationally feasible and herein lies the restriction of migration velocity analysis. Waveform inversion methods use the full wave equation to model the observed data and more complicated physics can be incorporated. Unfortunately, due to the band-limited nature of the data, the resulting inverse problem is highly nonlinear. Simply fitting the data in a least-squares sense by using a gradient-based optimization method is sometimes problematic. In this paper, we propose a novel method that measures the amount of focusing in the data domain rather than the image domain. As a first test of the method, we include some examples for 1D velocity models and the convolutional model. [source]

Unification of single-configuration seismic imaging processes

H. Jaramillo
ABSTRACT In this paper we derive an integral formula that encompasses all linear processes on seismic data. These include migration, demigration and residual migration, as well as data mapping procedures such as transformation to zero offset, inverse transformation to zero offset, residual transformation to zero offset and offset continuation. The derivation of the equation is different from all previous approaches to unification. Here we do not use a cascaded operation between two operators, but rather the superposition principle. In this regard, the derivation is not only more fundamental, but also simpler and more general. We study the kinematics and the dynamics of these processes and show that the signals can be reconstructed asymptotically either by finding the envelope of particular surfaces or by stacking energy along "adjoint" surfaces. For example, in the case of migration, the first set of surfaces are isochrons, while the "adjoint" surfaces are diffraction responses. In practice, the distinction between these two types of surfaces is equivalent to choosing the order of the computational loops with regard to the input and output seismic traces. [source]

Determining the dilation factor in 4D monitoring of compacting reservoirs by rock-physics models

José M. Carcione
ABSTRACT Hydrocarbon depletion and fluid injection cause compaction and stretching of the reservoir and overburden layers. 4D prestack seismic data can be used to detect these changes because compaction/stretching causes changes in traveltimes and seismic velocities. We show that, by using two different petro-elastic models at varying effective pressures, a good approximation is to assume that the fractional changes in layer thickness, ,L/L, and seismic velocity, ,v/v, are related by a linear function of ,L/L. The slope of this function (the dilation factor, ,= (,v/v)/(,L/L)) is negative and its absolute value generally decreases (shale, low porosity) or increases (sandstone, high porosity) with increasing layer thickness and decreasing effective pressure. The analysis is mainly performed for isotropic deformations. The dilation factor for uniaxial deformations is smaller in absolute value. The dilation factor, which can be calculated from time-lapse data, can be used to predict reservoir compaction/stretching as a function of depth and surface subsidence. [source]

Quantitative detection of fluid distribution using time-lapse seismic

Futoshi Tsuneyama
ABSTRACT Although previous seismic monitoring studies have revealed several relationships between seismic responses and changes in reservoir rock properties, the quantitative evaluation of time-lapse seismic data remains a challenge. In most cases of time-lapse seismic analysis, fluid and/or pressure changes are detected qualitatively by changes in amplitude strength, traveltime and/or Poisson's ratio. We present the steps for time-lapse seismic analysis, considering the pressure effect and the saturation scale of fluids. We then demonstrate a deterministic workflow for computing the fluid saturation in a reservoir in order to evaluate time-lapse seismic data. In this approach, we derive the physical properties of the water-saturated sandstone reservoir, based on the following inputs: VP, VS, , and the shale volume from seismic analysis, the average properties of sand grains, and formation-water properties. Next, by comparing the in-situ fluid-saturated properties with the 100% formation-water-saturated reservoir properties, we determine the bulk modulus and density of the in-situ fluid. Solving three simultaneous equations (relating the saturations of water, oil and gas in terms of the bulk modulus, density and the total saturation), we compute the saturation of each fluid. We use a real time-lapse seismic data set from an oilfield in the North Sea for a case study. [source]