Home About us Contact | |||
Segment Structures (segment + structure)
Selected AbstractsPreparation and properties of transparent thermoplastic segmented polyurethanes derived from different polyolsPOLYMER ENGINEERING & SCIENCE, Issue 5 2007Da-Kong Lee Various segmented polyurethanes of different soft segment structure with hard segment content of about 50 wt% were prepared from 4,4,-diphenylmethane diisocyanate (MDI), 1,4-butanediol and different polyols with a Mn of 2000 by a one-shot, hand-cast bulk polymerization method. The polyols used were a poly(tetramethylene ether)glycol, a poly(tetramethylene adipate)glycol, a polycaprolactonediol and two polycarbonatediols. The segmented polyurethanes were characterized by gel permeation chromatography (GPC), UV-visible spectrometry, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray diffraction, and their tensile properties and Shore A hardness were determined. The DSC and DMA data indicate that the miscibility between the soft segments and the hard segments of the segmented polyurethanes is dependent on the type of the soft segment, and follows the order: polycarbonate segments > polyester segments > polyether segments. The miscibility between the soft segments and the hard segments plays an important role in determining the transparency of the segmented polyurethanes. As the miscibility increases, the transparency of the segmented polyurethanes increases accordingly. The segmented polyurethanes exhibit high elongation and show ductile behavior. The tensile properties are also affected by the type of the soft segment to some extent. POLYM. ENG. SCI., 47:695,701, 2007. © 2007 Society of Plastics Engineers. [source] Structure and properties of cross-linked polyurethane copolymersADVANCES IN POLYMER TECHNOLOGY, Issue 3 2009S. Oprea Abstract Polyurethane elastomers based on polyester diols and aromatic or aliphatic diisocyanates can be used as vibration dampers and isolation materials. Two series of cross-linked polyurethanes with various hard segment structures and different amounts were prepared and thermomechanical properties of these materials were studied. Cross-linked polyurethane copolymers composed of poly(ethylene adipate)diol as soft segment and 4,4,-methylenebis(phenylisocyanate), 1,6-hexamethylene diisocyanate, and diols glycerin, 1,4-butanediol, and 1,6-hexanediol as hard segments were synthesized by a two-step process. The networks have been prepared by end-linking a mixture of the bifunctional precursor chains with trifunctional cross-linkers at off-stoichiometric ratios. The results show that the cross-link and the polyurethane hard segment interaction play a special role in the interconnected chain density and its magnitude is revealed by the mechanical properties. Of most importance, maximum stress, tensile modulus, and elongation at break increased significantly at the 22 wt % composition of hard segment content. Interchain cross-linking improves thermal stability, which was measured by thermogravimetric analysis and differential scanning calorimetry. Cross-linked polyurethane behaves as an elastomer and is useful for shock, noise, and vibration control. © 2009 Wiley Periodicals, Inc. Adv Polym Techn 28:165,172, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20155 [source] Conformational aspects of segmented poly(ester-urethanes)MACROMOLECULAR SYMPOSIA, Issue 1 2003S. Ioan Abstract Segmented poly(ester-urethanes) containing hard and soft segments, were obtained from aromatic diisocyanates with thiodiglycol or diethylene glycol as chain extenders, and poly(ethylene glycol)adipate usig a multistep polyaddition process. Transition temperatures by differential scanning calorimetry and thermo-optical analysis were employed to characterize polyurethane materials. Changes in the conformation of these polyurethanes were analyzed also, by viscometer measurements in N,N-dimethyl-formamide. The obtained data revealed that the thermal curves are influenced by the soft and hard segment structures in the temperature range studied. [source] Relationship between segment structures and elastic properties of segmented poly(urethane-urea) elastic fibersPOLYMER ENGINEERING & SCIENCE, Issue 11 2003Nori Yoshihara Studies on segmented poly(urethane-urea) (SPUU) elastic fibers having various segment structures were done in terms of elastic recovery and stress-strain relationship (S-S). Three kinds of segment structures were used: 1) the same composition having different sequences of segment units, 2) the same length of soft segments having different molecular weights of polyol, and 3) different segment structures having almost the same stress at 350% elongation. The SPUU elastic fibers having higher sequence numbers of both soft and hard segment units, that is, greater block structures, show better elastic recovery properties, especially delayed elastic recovery. The SPUU elastic fibers showing better elastic recovery take an optimum value for the number-average molecular weight (Mn) of soft segments jointed with urethane bonds. Here the optimum Mn depends on the molecular weight of polytetramethyleneglycol (PTMG) as a starting material. The hysteresis loss in S-S for the pre-elongation decreases with an increase of Mn of PTMG. The SPUU elastic fibers having greater block structures show lower stress with lower 2C1 and 2C1 + 2C2 of Mooney-Rivilin plot constants for elastic fibers having the same composition. This indicates a lower density of crosslinks for finite deformation. An increase of the urea bonds or the molar ratio of urea bond to urethane bond raises the stress. It is found that the polymerization process, as well as composition, is important for design structures of SPUU elastic fibers. [source] |