Home About us Contact | |||
Sediment Slurries (sediment + slurry)
Selected AbstractsOn the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of MexicoENVIRONMENTAL MICROBIOLOGY, Issue 5 2008Beth! Orcutt Summary The anaerobic oxidation of methane (AOM) in the marine subsurface is a significant sink for methane in the environment, yet our understanding of its regulation and dynamics is still incomplete. Relatively few groups of microorganisms consume methane in subsurface environments , namely the anaerobic methanotrophic archaea (ANME clades 1, 2 and 3), which are phylogenetically related to methanogenic archaea. Anaerobic oxidation of methane presumably proceeds via a ,reversed' methanogenic pathway. The ANME are generally associated with sulfate-reducing bacteria (SRB) and sulfate is the only documented final electron acceptor for AOM in marine sediments. Our comparative study explored the coupling of AOM with sulfate reduction (SR) and methane generation (MOG) in microbial communities from Gulf of Mexico cold seep sediments that were naturally enriched with methane and other hydrocarbons. These sediments harbour a variety of ANME clades and SRB. Following enrichment under an atmosphere of methane, AOM fuelled 50,100% of SR, even in sediment slurries containing petroleum-associated hydrocarbons and organic matter. In the presence of methane and sulfate, the investigated microbial communities produce methane at a small fraction (,10%) of the AOM rate. Anaerobic oxidation of methane, MOG and SR rates decreased significantly with decreasing concentration of methane, and in the presence of the SR inhibitor molybdate, but reacted differently to the MOG inhibitor 2-bromoethanesulfonate (BES). The addition of acetate, a possible breakdown product of petroleum in situ and a potential intermediate in AOM/SR syntrophy, did not suppress AOM activity; rather acetate stimulated microbial activity in oily sediment slurries. [source] Toxicity assessment of reference and natural freshwater sediments with the LuminoTox assayENVIRONMENTAL TOXICOLOGY, Issue 4 2006P. M. Dellamatrice Abstract We examined the possibility of adapting the LuminoTox, a recently-commercialized bioanalytical testing procedure initially developed for aqueous samples, to assess the toxic potential of sediments. This portable fluorescent biosensor uses photosynthetic enzyme complexes (PECs) to rapidly measure photosynthetic efficiency. LuminoTox testing of 14 CRM (Certified Reference Material) sediments was first undertaken with (1) a "solid phase assay" (Lum-SPA) in which PECs are in intimate contact with sediment slurries for a 15 min exposure period and (2) an elutriate assay (Lum-ELU) in which PECs are exposed for 15 min to sediment water elutriates. CRM sediment toxicity data were then compared with those generated with the Microtox Solid Phase Assay (Mic-SPA). A significant correlation (P < 0.05) was shown to exist between Lum-SPA and Mic-SPA, indicating that both tests display a similar toxicity response pattern for CRM sediments having differing contaminant profiles. The sediment elutriate Lum-ELU assay displayed toxicity responses (i.e. measurable IC20s) for eight of the 14 CRM sediments, suggesting that it is capable of determining the presence of sediment contaminants that are readily soluble in an aqueous elutriate. Lum-SPA and Mic-SPA bioassays were further conducted on 12 natural freshwater sediments and their toxicity responses were more weakly, yet significantly, correlated. Finally, Lum-SPA testing undertaken with increasing mixtures of kaolin clay confirmed that its toxicity responses, in a manner similar to those reported for the Mic-SPA assay, are also subject to the influence of grain size. While further studies will be required to more fully understand the relationship between Lum-SPA assay responses and the physicochemical makeup of sediments (e.g., grain size, combined presence of natural and anthropogenic contaminants), these preliminary results suggest that LuminoTox testing could be a useful screen to assess the toxic potential of solid media. © 2006 Wiley Periodicals, Inc. Environ Toxicol 21: 395,402, 2006. [source] Reduction of perchlorate in river sedimentENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2006Rupert Simon Abstract The transformation of perchlorate was investigated in river sediment during laboratory batch and column studies to determine if reduction of perchlorate is a viable pathway in natural sediment without previous exposure to perchlorate. Perchlorate at an initial concentration of 10 ,M was reduced quantitatively to chloride in 3 d after a lag phase of 2 d in sediment slurries amended with lactate. Raising the initial concentration of perchlorate to 1,000 ,M increased the lag phase to 20 d before reduction occurred. At perchlorate concentrations greater than 1,000 ,M, the reduction of perchlorate was not observed within 40 d. We speculate that the high concentration of perchlorate specifically was problematic to the microbes mediating the reduction of perchlorate. High levels of nitrate inhibited the reduction of perchlorate as well. In sediment slurries amended with 870 ,M sodium nitrate, the reduction of perchlorate at an initial concentration of 100 ,M did not occur before day 15 of the experiment, but complete removal of nitrate had occurred by day four. Sediment column studies further demonstrated the dependence of perchlorate reduction on endogenous nitrate levels. [source] |