Avian Influenza Virus (avian + influenza_virus)

Distribution by Scientific Domains


Selected Abstracts


Seeking a second opinion: uncertainty in disease ecology

ECOLOGY LETTERS, Issue 6 2010
Brett T. McClintock
Ecology Letters (2010) 13: 659,674 Abstract Analytical methods accounting for imperfect detection are often used to facilitate reliable inference in population and community ecology. We contend that similar approaches are needed in disease ecology because these complicated systems are inherently difficult to observe without error. For example, wildlife disease studies often designate individuals, populations, or spatial units to states (e.g., susceptible, infected, post-infected), but the uncertainty associated with these state assignments remains largely ignored or unaccounted for. We demonstrate how recent developments incorporating observation error through repeated sampling extend quite naturally to hierarchical spatial models of disease effects, prevalence, and dynamics in natural systems. A highly pathogenic strain of avian influenza virus in migratory waterfowl and a pathogenic fungus recently implicated in the global loss of amphibian biodiversity are used as motivating examples. Both show that relatively simple modifications to study designs can greatly improve our understanding of complex spatio-temporal disease dynamics by rigorously accounting for uncertainty at each level of the hierarchy. [source]


Surveillance for highly pathogenic avian influenza in wild birds in the USA

INTEGRATIVE ZOOLOGY (ELECTRONIC), Issue 4 2009
Thomas J. DELIBERTO
Abstract As part of the USA's National Strategy for Pandemic Influenza, an Interagency Strategic Plan for the Early Detection of Highly Pathogenic H5N1 Avian Influenza in Wild Migratory Birds was developed and implemented. From 1 April 2006 through 31 March 2009, 261 946 samples from wild birds and 101 457 wild bird fecal samples were collected in the USA; no highly pathogenic avian influenza was detected. The United States Department of Agriculture, and state and tribal cooperators accounted for 213 115 (81%) of the wild bird samples collected; 31, 27, 21 and 21% of the samples were collected from the Atlantic, Pacific, Central and Mississippi flyways, respectively. More than 250 species of wild birds in all 50 states were sampled. The majority of wild birds (86%) were dabbling ducks, geese, swans and shorebirds. The apparent prevalence of low pathogenic avian influenza viruses during biological years 2007 and 2008 was 9.7 and 11.0%, respectively. The apparent prevalence of H5 and H7 subtypes across all species sampled were 0.5 and 0.06%, respectively. The pooled fecal samples (n= 101 539) positive for low pathogenic avian influenza were 4.0, 6.7 and 4.7% for biological years 2006, 2007 and 2008, respectively. The highly pathogenic early detection system for wild birds developed and implemented in the USA represents the largest coordinated wildlife disease surveillance system ever conducted. This effort provided evidence that wild birds in the USA were free of highly pathogenic avian influenza virus (given the expected minimum prevalence of 0.001%) at the 99.9% confidence level during the surveillance period. [source]


Development of a consensus microarray method for identification of some highly pathogenic viruses

JOURNAL OF MEDICAL VIROLOGY, Issue 11 2009
Kang Xiao-Ping
Abstract Some highly pathogenic viruses, such as Chikungunya virus, Japanese encephalitis virus, Yellow fever virus, Dengue virus, Hanta virus, SARS-CoV, and H5N1 avian influenza virus can cause severe infectious diseases. However, the consensus method for detecting these viruses has not been well established. A rapid and sensitive microarray approach for detection of these viruses and a panel of specific probes covering nine genera and 16 virus species were designed. 70-mer oligonucleotides were used at the genus level and 50-mer oligonucleotides were at the species level, respectively. To decrease the interference of the host genome in hybridization, the consensus genus primers were designed and used to reverse transcribe only virus genome. The synthesis of the second strand was carried out with a random primer sequence (5,-GTTTCCCAGTAGGTCTCNNNNNNNN-3,). The amplified products were labeled and processed for microarray analyses. This microarray-based method used the highly conserved consensus primers to synthesize specifically the virus cDNA and could identify effectively Chikungunya virus, Japanese encephalitis virus, Yellow fever virus, Dengue virus, Tick borne encephalitis virus, and H5N1 avian influenza virus. Using this method, one unknown virus isolated from pig brain in Shanxi Province, China was identified. This method may have an important potential application for the diagnosis of virus infection. J. Med. Virol. 81:1945,1950, 2009. © 2009 Wiley-Liss, Inc. [source]


Broad-spectrum antiviral effect of Agrimonia pilosa extract on influenza viruses

MICROBIOLOGY AND IMMUNOLOGY, Issue 1 2010
Woo-Jin Shin
ABSTRACT Influenza virus continues to emerge and re-emerge, posing new threats for humans. Here we tested various Korean medicinal plant extracts for potential antiviral activity against influenza viruses. Among them, an extract of Agrimonia pilosa was shown to be highly effective against all three subtypes of human influenza viruses including H1N1 and H3N2 influenza A subtypes and influenza B virus. The EC50 value against influenza A virus, as tested by the plaque reduction assay on MDCK cells, was 14,23 ,g/ml. The extract also exhibited a virucidal effect at a concentration of 160,570 ng/ml against influenza A and B viruses when the viruses were treated with the extract prior to plaque assay. In addition, when tested in embryonated chicken eggs the extract exhibited a strong inhibitory effect in ovo on the H9N2 avian influenza virus at a concentration of 280 ng/ml. Quantitative RT-PCR analysis data showed that the extract, to some degree, suppressed viral RNA synthesis in MDCK cells. HI and inhibition of neuraminidase were observed only at high concentrations of the extract. And yet, the extract's antiviral activity required direct contact between it and the virus, suggesting that its antiviral action is mediated by the viral membrane, but does not involve the two major surface antigens, HA and NA, of the virus. The broad-spectrum antiviral activity of Agrimonia pilosa extract on various subtypes of influenza viruses merits further investigation as it may provide a means of managing avian influenza infections in poultry farms and potential avian-human transmission. [source]


Cross-species transfer of viruses: implications for the use of viral vectors in biomedical research, gene therapy and as live-virus vaccines

THE JOURNAL OF GENE MEDICINE, Issue 10 2005
Derrick Louz
Abstract Summary All living organisms are continuously exposed to a plethora of viruses. In general, viruses tend to be restricted to the natural host species which they infect. From time to time viruses cross the host-range barrier expanding their host range. However, in very rare cases cross-species transfer is followed by the establishment and persistence of a virus in the new host species, which may result in disease. Recent examples of viruses that have crossed the species barrier from animal reservoirs to humans are hantavirus, haemorrhagic fever viruses, arboviruses, Nipah and Hendra viruses, avian influenza virus (AI), monkeypox virus, and the SARS-associated coronavirus (SARS-CoV). The opportunities for cross-species transfer of mammalian viruses have increased in recent years due to increased contact between humans and animal reservoirs. However, it is difficult to predict when such events will take place since the viral adaptation that is needed to accomplish this is multifactorial and stochastic. Against this background the intensified use of viruses and their genetically modified variants as viral gene transfer vectors for biomedical research, experimental gene therapy and for live-vector vaccines is a cause for concern. This review addresses a number of potential risk factors and their implications for activities with viral vectors from the perspective of cross-species transfer of viruses in nature, with emphasis on the occurrence of host-range mutants resulting from either cell culture or tropism engineering. The issues are raised with the intention to assist in risk assessments for activities with vector viruses. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Seroconversion to avian influenza virus in free-range chickens in the Riverland region of Victoria

AUSTRALIAN VETERINARY JOURNAL, Issue 8 2010
IJ East
Background Since 2005, H5N1 avian influenza (AI) has spread from South-East Asia to over 60 different countries, resulting in the direct death or slaughter of over 250,000,000 poultry. Migratory waterfowl have been implicated in this spread and in Australia there have been numerous isolations of low-pathogenicity AI virus from wild waterfowl and shorebirds. The Department of Human Services, Victoria maintains 10 sentinel free-range chicken flocks in the Riverland at locations that are populated by large numbers of waterfowl known to carry a range of strains of AI. Objective This study analysed historical samples collected in 1991,94 and 2003,06 from the library of serum samples for antibodies against AI to assess the potential for transfer of AI virus from wild waterfowl to free-range poultry. Results Of the 2000 serum samples analysed, 17 were positive for antibodies against AI and 87 were suspect, with a clustering of positive and suspect results in the years 1994, 2003 and 2004. There was also a clustering of positive samples at the site of the Barmah flock. Nine sequential sets of sera from individual chickens with at least one positive result were identified. Analysis of these sequential sets showed that infection was acquired on site but that the antibody response to AI infection was short-lived and was no longer detectable at 8 weeks after the positive finding. Conclusion The surveillance of sentinel chickens is a potential avenue for monitoring the circulation of AI viruses and could provide an early warning system for the commercial poultry industries. [source]