Aversive Stimuli (aversive + stimulus)

Distribution by Scientific Domains


Selected Abstracts


Separate brain regions code for salience vs. valence during reward prediction in humans

HUMAN BRAIN MAPPING, Issue 4 2007
Jimmy Jensen
Abstract Predicting rewards and avoiding aversive conditions is essential for survival. Recent studies using computational models of reward prediction implicate the ventral striatum in appetitive rewards. Whether the same system mediates an organism's response to aversive conditions is unclear. We examined the question using fMRI blood oxygen level-dependent measurements while healthy volunteers were conditioned using appetitive and aversive stimuli. The temporal difference learning algorithm was used to estimate reward prediction error. Activations in the ventral striatum were robustly correlated with prediction error, regardless of the valence of the stimuli, suggesting that the ventral striatum processes salience prediction error. In contrast, the orbitofrontal cortex and anterior insula coded for the differential valence of appetitive/aversive stimuli. Given its location at the interface of limbic and motor regions, the ventral striatum may be critical in learning about motivationally salient stimuli, regardless of valence, and using that information to bias selection of actions. Inc. Hum Brain Mapp, 2007. © 2006 Wiley-Liss, Inc. [source]


Rats selectively bred for low levels of 50 kHz ultrasonic vocalizations exhibit alterations in early social motivation

DEVELOPMENTAL PSYCHOBIOLOGY, Issue 4 2008
K.M. Harmon
Abstract In rats, the rates of 50 kHz ultrasonic vocalizations (USVs) can be used as a selective breeding phenotype and variations in this phenotype can be an indicator of affective states. The 50 kHz USV is elicited by rewarding stimuli (e.g., food, sexual behavior) and therefore can express a positive affective state. Conversely, the 22 kHz USV is elicited by aversive stimuli (e.g., presence of a predator, social defeat) indicating a negative affective state. In the present study, we tested the effect of selectively breeding for 50 kHz USVs on a variety of maternal social/emotional behaviors in young rat pups (PND 10-12). These measures consisted of an assessment of isolation calls and conditioned odor preference paradigm. Results indicate that animals selected for low levels of 50 kHz USVs show the greatest alterations in social behaviors compared to the control animals. The low line animals had an increase in isolation calls tested during place preference conditioning and a decrease in 50 kHz ultrasonic calls in all conditions. These same low line animals failed to show a typical preference for a maternally-associated odor during the place preference test. The different social behaviors of the high line animals did not consistently vary from those of the control group. These results have important implications for the study of genetic and epigenetic mechanisms underlying emotional states, and possibly contribute to the research underlying the emotional changes in developmental disorders such as autistic spectrum disorder by providing a novel animal model that displays communication deficits that are interdependent with significant social behavioral impairments. © 2008 Wiley Periodicals, Inc. Dev Psychobiol 50: 322,331, 2008. [source]


Individual sensitivity to pain expectancy is related to differential activation of the hippocampus and amygdala

HUMAN BRAIN MAPPING, Issue 2 2010
Michal Ziv
Abstract Anxiety arising during pain expectancy can modulate the subjective experience of pain. However, individuals differ in their sensitivity to pain expectancy. The amygdale and hippocampus were proposed to mediate the behavioral response to aversive stimuli. However, their differential role in mediating anxiety-related individual differences is not clear. Using fMRI, we investigated brain activity during expectancy to cued or uncued thermal pain applied to the wrist. Following each stimulation participants rated the intensity of the painful experience. Activations in the amygdala and hippocampus were examined with respect to individual differences in harm avoidance (HA) personality trait, and individual sensitivity to expectancy, (i.e. response to cued vs. uncued painful stimuli). Only half of the subjects reported on cued pain as being more painful than uncued pain. In addition, we found a different activation profile for the amygdala and hippocampus during pain expectancy and experience. The amygdala was more active during expectancy and this activity was correlated with HA scores. The hippocampal activity was equally increased during both pain expectancy and experience, and correlated with the individual's sensitivity to expectancy. Our findings suggest that the amygdala supports an innate tendency to approach or avoid pain as reflected in HA trait, whereas the hippocampus mediates the effect of context possibly via appraisal of the stimulus value. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. [source]


Separate brain regions code for salience vs. valence during reward prediction in humans

HUMAN BRAIN MAPPING, Issue 4 2007
Jimmy Jensen
Abstract Predicting rewards and avoiding aversive conditions is essential for survival. Recent studies using computational models of reward prediction implicate the ventral striatum in appetitive rewards. Whether the same system mediates an organism's response to aversive conditions is unclear. We examined the question using fMRI blood oxygen level-dependent measurements while healthy volunteers were conditioned using appetitive and aversive stimuli. The temporal difference learning algorithm was used to estimate reward prediction error. Activations in the ventral striatum were robustly correlated with prediction error, regardless of the valence of the stimuli, suggesting that the ventral striatum processes salience prediction error. In contrast, the orbitofrontal cortex and anterior insula coded for the differential valence of appetitive/aversive stimuli. Given its location at the interface of limbic and motor regions, the ventral striatum may be critical in learning about motivationally salient stimuli, regardless of valence, and using that information to bias selection of actions. Inc. Hum Brain Mapp, 2007. © 2006 Wiley-Liss, Inc. [source]


Long-term behavioral and neurochemical effects of chronic stress exposure in rats

JOURNAL OF NEUROCHEMISTRY, Issue 6 2001
Simona Mangiavacchi
Rats exposed to acute unavoidable stress develop a deficit in escaping avoidable aversive stimuli that lasts as long as unavoidable stress exposure is repeated. A 3-week exposure to unavoidable stress also reduces dopamine (DA) output in the nucleus accumbens shell (NAcS). This study showed that a 7-day exposure to unavoidable stress induced in rats an escape deficit and a decrease in extraneuronal DA basal concentration in the NAcS. Moreover, animals had reduced DA and serotonin (5-HT) accumulation after cocaine administration in the medial pre-frontal cortex (mPFC) and NAcS, compared with control animals. After a 3-week exposure to unavoidable stress, escape deficit and reduced DA output in the NAcS were still significant at day 14 after the last stress administration. In the mPFC we observed: (i) a short-term reduction in DA basal levels that was back to control values at day 14; (ii) a decrease in DA accumulation at day 3 followed by a significant increase beyond control values at day 14; (iii) a significant reduction in 5-HT extraneuronal basal levels at day 3, but not at day 14. Finally, a significant decrease in 5-HT accumulation following cocaine administration was present in the NAcS and mPFC at day 3, but not at day 14. In conclusion, a long-term stress exposure induced long-lasting behavioral sequelae associated with reproducible neurochemical modifications. [source]


Motivation for Alcohol Becomes Resistant to Quinine Adulteration After 3 to 4 Months of Intermittent Alcohol Self-Administration

ALCOHOLISM, Issue 9 2010
Frederic W. Hopf
Background:, Continued consumption of alcohol despite deleterious consequences is a hallmark of alcoholism and represents a critical challenge to therapeutic intervention. Previous rat studies showed that enduring alcohol self-administration despite pairing alcohol with normally aversive stimuli was only observed after very long-term intake (>8 months). Aversion-resistant alcohol intake has been previously interpreted to indicate pathological or compulsive motivation to consume alcohol. However, given the time required to model compulsive alcohol seeking in previous studies, there is considerable interest in developing more efficient and quantitative rodent models of aversion-resistant alcohol self-administration. Methods:, Outbred Wistar rats underwent 3 to 4 months or approximately 1.5 months of intermittent, home-cage, two-bottle access (IAA) to 20% alcohol (v/v) or water. Then, after brief operant training, the effect of the bitter-tasting quinine (0.1 g/l) on the motivation to seek alcohol was quantified via progressive ratio (PR). Motivation for quinine-adulterated 2% sucrose under PR was assayed in a separate cohort of 3 to 4 months IAA rats. The effects of quinine on home-cage alcohol consumption in IAA rats and rats with continuous access to alcohol were also examined. Finally, a dose,response for quinine taste preference in IAA and continuous-access animals was determined. Results:, Motivation for alcohol after 3 to 4 months IAA, measured using an operant PR procedure, was not altered by adulteration of alcohol with 0.1 g/l quinine. In contrast, after 3 to 4 months of IAA, motivation for sucrose under PR was significantly reduced by adulteration of sucrose with 0.1 g/l quinine. In addition, motivation for alcohol after only approximately 1.5 months IAA was significantly reduced by adulteration of alcohol with 0.1 g/l quinine. Furthermore, home-cage alcohol intake by IAA rats was insensitive to quinine at concentrations (0.01, 0.03 g/l) that significantly reduced alcohol drinking in animals with continuous access to alcohol. Finally, no changes in quinine taste preference after 3 to 4 months IAA or continuous access to alcohol were observed. Conclusions:, We have developed a novel and technically simple hybrid operant/IAA model in which quinine-resistant motivation for alcohol is evident after an experimentally tractable period of time (3 to 4 months vs. 8 months). Quinine dramatically reduced sucrose and water intake by IAA rats, indicating that continued responding for alcohol in IAA rats despite adulteration with the normally aversive quinine might reflect maladaptive or compulsive motivation for alcohol. This model could facilitate identification of novel therapeutic interventions for pathological alcohol seeking in humans. [source]


A Microdialysis Profile of Dynorphin A1,8 Release in the Rat Nucleus Accumbens Following Alcohol Administration

ALCOHOLISM, Issue 6 2006
Peter W. Marinelli
Background: Pharmacological studies have implicated the endogenous opioid system in mediating alcohol intake. Other evidence has shown that alcohol administration can influence endorphinergic and enkephalinergic activity, while very few studies have examined its effect on dynorphinergic systems. The aim of the present study was to investigate the effect of alcohol administration or a mechanical stressor on extracellular levels of dynorphin A1,8 in the rat nucleus accumbens,a brain region that plays a significant role in the processes underlying reinforcement and stress. Methods: Male Sprague,Dawley rats were implanted with a microdialysis probe aimed at the shell region of the nucleus accumbens. Artificial cerebrospinal fluid was pumped at a rate of 1.5 ,L/min in awake and freely moving animals and the dialysate was collected at 30-minute intervals. In one experiment, following a baseline period, rats were injected intraperitoneally with either physiological saline or 1 of 3 doses of alcohol, 0.8, 1.6, or 3.2 g ethanol/kg body weight. In a second experiment, following a baseline period, rats were applied a clothespin to the base of their tail for 20 minutes. The levels of dynorphin A1,8 in the dialysate were analyzed with solid-phase radioimmunoassay. Results: Relative to saline-treated controls, an alcohol dose of 1.6 and 3.2 g/kg caused a transient increase in the extracellular levels of dynorphin A1,8 in the first 30 minutes of alcohol administration. However, the effect resulting from the high 3.2 g/kg dose was far more pronounced and more significant than with the moderate dose. There was no effect of tail pinch on dynorphin A1,8 levels in the nucleus accumbens. Conclusions: In this experiment, a very high dose of alcohol was especially capable of stimulating dynorphin A1,8 release in the nucleus accumbens. Dynorphin release in the accumbens has been previously associated with aversive stimuli and may thus reflect a system underlying the aversive properties of high-dose alcohol administration. However, the lack of effect of tail-pinch stress in the present study suggests that dynorphin A1,8 is not released in response to all forms of stressful/aversive stimuli. [source]


Aversive phototaxic suppression: evaluation of a short-term memory assay in Drosophila melanogaster

GENES, BRAIN AND BEHAVIOR, Issue 4 2009
L. Seugnet
Drosophila melanogaster is increasingly being used to model human conditions that are associated with cognitive deficits including fragile-X syndrome, Alzheimer's disease, Parkinson's disease, sleep loss, etc. With few exceptions, cognitive abilities that are known to be modified in these conditions in humans have not been evaluated in fly models. One reason is the absence of a simple, inexpensive and reliable behavioral assay that can be used by laboratories that are not expert in learning and memory. Aversive phototaxic suppression (APS) is a simple assay in which flies learn to avoid light that is paired with an aversive stimulus (quinine/humidity). However, questions remain about whether the change in the fly's behavior reflects learning an association between light and quinine/humidity or whether the change in behavior is because of nonassociative effects of habituation and/or sensitization. We evaluated potential effects of sensitization and habituation on behavior in the T-maze and conducted a series of yoked control experiments to further exclude nonassociative effects and determine whether this task evaluates operant learning. Together these experiments indicate that a fly must associate the light with quinine/humidity to successfully complete the task. Next, we show that five classic memory mutants are deficient in this assay. Finally, we evaluate performance in a fly model of neurodegenerative disorders associated with the accumulation of Tau. These data indicate that APS is a simple and effective assay that can be used to evaluate fly models of human conditions associated with cognitive deficits. [source]


DUAL ACTIVATION OF CARDIAC SYMPATHETIC AND PARASYMPATHETIC COMPONENTS DURING CONDITIONED FEAR TO CONTEXT IN THE RAT

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 12 2006
Pascal Carrive
SUMMARY 1The present study investigates the contribution of the sympathetic and vagal parasympathetic systems to the tachycardic response of long-lasting (40 min) conditioned fear responses to context. 2The conditioned fear response evoked by re-exposure to a footshock chamber was tested 10 min after intravenous injection of the ,-adrenoceptor antagonist propranolol (2 mg/kg) or the muscarinic antagonist atropine methyl nitrate (2 mg/kg) in rats implanted with radiotelemetric probes. 3Compared with saline controls, the drugs did not change the behavioural component of the response (freezing, 22 kHz ultrasonic vocalizations) or its pressor component (+28 mmHg). 4Propranolol abolished the tachycardic response of fear, whereas atropine more than doubled it (from +75 to +175 b.p.m. above resting baseline). 5The results demonstrate that both sympathetic and vagal parasympathetic outflows to the heart are strongly activated during conditioned fear. The vagal activation may act to hold back cardiac acceleration while the animal waits for the aversive stimulus to come. [source]


A Microdialysis Profile of Dynorphin A1,8 Release in the Rat Nucleus Accumbens Following Alcohol Administration

ALCOHOLISM, Issue 6 2006
Peter W. Marinelli
Background: Pharmacological studies have implicated the endogenous opioid system in mediating alcohol intake. Other evidence has shown that alcohol administration can influence endorphinergic and enkephalinergic activity, while very few studies have examined its effect on dynorphinergic systems. The aim of the present study was to investigate the effect of alcohol administration or a mechanical stressor on extracellular levels of dynorphin A1,8 in the rat nucleus accumbens,a brain region that plays a significant role in the processes underlying reinforcement and stress. Methods: Male Sprague,Dawley rats were implanted with a microdialysis probe aimed at the shell region of the nucleus accumbens. Artificial cerebrospinal fluid was pumped at a rate of 1.5 ,L/min in awake and freely moving animals and the dialysate was collected at 30-minute intervals. In one experiment, following a baseline period, rats were injected intraperitoneally with either physiological saline or 1 of 3 doses of alcohol, 0.8, 1.6, or 3.2 g ethanol/kg body weight. In a second experiment, following a baseline period, rats were applied a clothespin to the base of their tail for 20 minutes. The levels of dynorphin A1,8 in the dialysate were analyzed with solid-phase radioimmunoassay. Results: Relative to saline-treated controls, an alcohol dose of 1.6 and 3.2 g/kg caused a transient increase in the extracellular levels of dynorphin A1,8 in the first 30 minutes of alcohol administration. However, the effect resulting from the high 3.2 g/kg dose was far more pronounced and more significant than with the moderate dose. There was no effect of tail pinch on dynorphin A1,8 levels in the nucleus accumbens. Conclusions: In this experiment, a very high dose of alcohol was especially capable of stimulating dynorphin A1,8 release in the nucleus accumbens. Dynorphin release in the accumbens has been previously associated with aversive stimuli and may thus reflect a system underlying the aversive properties of high-dose alcohol administration. However, the lack of effect of tail-pinch stress in the present study suggests that dynorphin A1,8 is not released in response to all forms of stressful/aversive stimuli. [source]