Average Composition (average + composition)

Distribution by Scientific Domains


Selected Abstracts


A Novel Cathode Material with a Concentration-Gradient for High-Energy and Safe Lithium-Ion Batteries

ADVANCED FUNCTIONAL MATERIALS, Issue 3 2010
Yang-Kook Sun
Abstract A high-energy functional cathode material with an average composition of Li[Ni0.72Co0.18Mn0.10]O2, mainly comprising a core material Li[Ni0.8Co0.2]O2 encapsulated completely within a stable manganese-rich concentration-gradient shell is successfully synthesized by a co-precipitation process. The Li[Ni0.72Co0.18Mn0.10]O2 with a concentration-gradient shell has a shell thickness of about 1,µm and an outer shell composition rich in manganese, Li[Ni0.55Co0.15Mn0.30]O2. The core material can deliver a very high capacity of over 200,mA h g,1, while the manganese-rich concentration-gradient shell improves the cycling and thermal stability of the material. These improvements are caused by a gradual and continuous increase of the stable tetravalent Mn in the concentration-gradient shell layer. The electrochemical and thermal properties of this cathode material are found to be far superior to those of the core Li[Ni0.8Co0.2]O2 material alone. Electron microscopy also reveals that the original crystal structure of this material remains intact after cycling. [source]


Radial profiles of seismic attenuation in the upper mantle based on physical models

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2008
Fabio Cammarano
SUMMARY Thermally activated, viscoelastic relaxation of the Earth's materials is responsible for intrinsic attenuation of seismic waves. Seismic observations have been used to define layered radially symmetric attenuation models, independent of any constraints on temperature and composition. Here, we interpret free-oscillation and surface wave attenuation measurements in terms of physical structures, by using the available knowledge on the physical mechanisms that govern attenuation at upper-mantle (<400 km) conditions. We find that observations can be explained by relatively simple thermal and grain-size structures. The 1-D attenuation models obtained do not have any sharp gradients below 100 km, but fit the data equally well as the seismic models. The sharp gradients which characterize these models are therefore not required by the data. In spite of the large sensitivity of seismic observations to temperature, a definitive interpretation is limited by the unknown effects of pressure on anelasticity. Frequency dependence of anelasticity, as well as trade-offs with deeper attenuation structure and dependence on the elastic background model, are less important. Effects of water and dislocations can play an important role as well and further complicate the interpretation. Independent constraints on temperature and grain size expected around 100 km depth, help to constrain better the thermal and grain-size profiles at greater depth. For example, starting from a temperature of 1550 K at 100 km and assuming that the seismic attenuation is governed by the Faul & Jackson's (2005) mechanism, we found that negative thermal gradients associated with several cm grain sizes (assuming low activation volume) or an adiabatic gradient associated with ,1 cm grain size, can explain the data. A full waveform analysis, combining the effects on phase and amplitude of, respectively, elasticity and anelasticity, holds promise for further improving our knowledge on the average composition and thermal structure of the upper mantle. [source]


Constraint of Oxygen Fugacity During Field-Assisted Sintering: TiO2 as a Test Case

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 3 2008
Dat V. Quach
Field-assisted sintering exposes samples in a graphite die to reducing conditions. Using TiO2 as a test case, this work shows that internal redox equlibria in the sample, rather than the graphite,CO,O2 equilibrium, appear to control the oxygen fugacity. Samples sintered at 1160°C for 20 min are homogeneous in oxygen content and have an average composition of TiO1.983±0.001. The oxygen fugacity during these sintering experiments is calculated to be about 10,16 atm, which is higher than the value obtained from thermodynamic equilibrium of graphite,CO,O2 at the given temperature. The oxygen fugacity is similar to that for the quasi-two-phase region, or hysteresis loop, representing the coexistence of reduced rutile with random crystallographic shear (CS) planes and the first ordered CS phase. [source]


Crystallization and Dielectric Properties of SrO,BaO,Nb2O5,SiO2 Tungsten-Bronze Glass-Ceramics

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2000
Jiin-Jyh Shyu
The crystallization and dielectric properties of SrO,BaO,Nb2O5,SiO2 glass-ceramics have been investigated. Glass-ceramics that contain strontium barium niobate (SBN) as a primary crystalline phase, which has a tungsten bronze structure, are produced. The formation of crystalline secondary phases also has been studied. The SBN phase shows evidence of both surface nucleation and bulk nucleation, and the crystals have an average composition of Sr0.47Ba0.53Nb2O6. The dendritic morphology of the SBN crystals has been examined. The SBN content and composite dielectric constant each has been studied as a function of heating temperature/time. The highest SBN content and dielectric constant obtained in the present study are 42 vol% and 180, respectively. The dielectric constant of the glass-ceramics is determined primarily by the SBN content and the residual glass phase. The dielectric constant of the randomly oriented SBN crystal in the glass-ceramics is calculated, using dielectric mixture rules, to be ,400. [source]


A Simplified Model for Prediction of Molecular Weight Distributions in Ethylene-Hexene Copolymerization Using Ziegler-Natta Catalysts

MACROMOLECULAR REACTION ENGINEERING, Issue 5 2007
Duncan E. Thompson
Abstract A simplified steady-state model has been developed to predict molecular weight distributions and average compositions of ethylene-hexene copolymers produced using heterogeneous Ziegler-Natta catalysts in gas-phase reactors. The model uses a simplified reaction scheme to limit the number of parameters that must be estimated. The number of parameters is further reduced by assuming that different types of active sites share common rate constants for some reactions. Estimates of kinetic parameters are obtained using deconvolution analysis of industrial copolymer samples produced using a variety of isothermal steady-state operating conditions. The parameter estimates should prove useful as initial guesses for future parameter estimation in a non-isothermal model. [source]


Heterogeneous agglutinitic glass and the fusion of the finest fraction (F3) model

METEORITICS & PLANETARY SCIENCE, Issue 12 2002
Abhijit Basu
They include (1) theoretical expectations that shock pulses should engulf and melt smaller grains more efficiently than larger grains, (2) experimental results of impact shock, albeit at lower than presumed hypervelocity impacts of micrometeorites on the lunar regolith, and (3) new analyses confirming previous results that average compositions of agglutinitic glass are biased towards that of the finest fraction of lunar soils from which they had formed. We add another reason in support of the F3 model. Finer grains of lunar soils are also much more abundant. Hence, electrostatic forces associated with the rotating terminator region bring the finest grains that are obviously much lighter than courser grains to the surface of the Moon. This further contributes to the preferential melting of the finest fraction upon micrometeoritic impacts. New backscattered electron imaging shows that agglutinitic glass is inhomogeneous at submicron scale. Composition ranges of agglutinitic glass are extreme and deviate from that of the finest fraction, even by more than an order of magnitude for some components. Additionally, we show how an ilmenite grain upon impact would produce TiO2 -rich agglutinitic glass in complete disregard to the requirements of fusion of the finest fraction. We propose an addition to the F3 model to accommodate these observations (i.e., that micrometeorite impacts indiscriminately melt the immediate target regardless of grain size or grain composition). We, therefore, suggest that (1) agglutinitic glass is the sum of (a) the melt produced by the fusion of the finest fraction of lunar soils and (b) the microvolume of the indiscriminate target, which melts at high-shock pressures from micrometeoritic impacts, and that (2) because of the small volume of the melt and incorporating cold soil grains, the melt quenched so rapidly that it did not mix and homogenize to represent any preferential composition, for example, that of the finest fraction. [source]