Scanner Hardware (scanner + hardware)

Distribution by Scientific Domains


Selected Abstracts


Novel software architecture for rapid development of magnetic resonance applications

CONCEPTS IN MAGNETIC RESONANCE, Issue 3 2002
Josef Debbins
Abstract As the pace of clinical magnetic resonance (MR) procedures grows, the need for an MR scanner software platform on which developers can rapidly prototype, validate, and produce product applications becomes paramount. A software architecture has been developed for a commercial MR scanner that employs state of the art software technologies including Java, C++, DICOM, XML, and so forth. This system permits graphical (drag and drop) assembly of applications built on simple processing building blocks, including pulse sequences, a user interface, reconstruction and postprocessing, and database control. The application developer (researcher or commercial) can assemble these building blocks to create custom applications. The developer can also write source code directly to create new building blocks and add these to the collection of components, which can be distributed worldwide over the internet. The application software and its components are developed in Java, which assures platform portability across any host computer that supports a Java Virtual Machine. The downloaded executable portion of the application is executed in compiled C++ code, which assures mission-critical real-time execution during fast MR acquisition and data processing on dedicated embedded hardware that supports C or C++. This combination permits flexible and rapid MR application development across virtually any combination of computer configurations and operating systems, and yet it allows for very high performance execution on actual scanner hardware. Applications, including prescan, are inherently real-time enabled and can be aggregated and customized to form "superapplications," wherein one or more applications work with another to accomplish the clinical objective with a very high transition speed between applications. © 2002 Wiley Periodicals, Inc. Concepts in Magnetic Resonance (Magn Reson Engineering) 15: 216,237, 2002 [source]


Molecular imaging in small animals,roles for micro-CT

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue S39 2002
Erik L. Ritman
Abstract X-ray micro-CT is currently used primarily to generate 3D images of micro-architecture (and the function that can be deduced from it) and the regional distribution of administered radiopaque indicators, within intact rodent organs or biopsies from large animals and humans. Current use of X-ray micro-CT can be extended in three ways to increase the quantitative imaging of molecular transport and accumulation within such specimens. (1) By use of heavy elements, other than the usual iodine, attached to molecules of interest or to surrogates for those molecules. The accumulation of the indicator in the physiological compartments, and the transport to and from such compartments, can be quantitated from the imaged spatial distribution of these contrast agents. (2) The high spatial resolution of conventional X-ray attenuation-based CT images can be used to improve the quantitative nature of radionuclide-based tomographic images (SPECT & PET) by providing correction for attenuation of the emitted gamma rays and the accurate delineation of physiological spaces known to selectively accumulate those indicators. Similarly, other imaging modalities which also localize functions in 2D images (such as histological sections subsequently obtained from the same specimen), can provide a synergistic combination with CT-based 3D microstructure. (3) By increasing the sensitivity and specificity of X-ray CT image contrast by use of methods such as: K-edge subtraction imaging, X-ray fluorescence imaging, imaging of the various types of scattered X-ray and the consequences of the change in the speed of X-rays through different tissues, such as refraction and phase shift. These other methods of X-ray imaging can increase contrast by more than an order of magnitude over that due to conventionally-used attenuation of X-ray. To fully exploit their potentials, much development of radiopaque indicators, scanner hardware and image reconstruction and analysis software will be needed. J. Cell. Biochem. Suppl. 39: 116,124, 2002. © 2002 Wiley-Liss, Inc. [source]


3D fluoroscopy with real-time 3D non-cartesian phased-array contrast-enhanced MRA,

MAGNETIC RESONANCE IN MEDICINE, Issue 2 2006
Ethan Brodsky
Abstract For optimized CE-MRA of the chest and abdomen, the scan time and breath-hold must be coordinated with the arrival of contrast. A 3D fluoroscopy system is demonstrated that performs real-time 3D projection reconstruction acquisition, reconstruction, and visualization using only the standard scanner hardware and operator console workstation. Unlike 2D fluorotriggering techniques, no specification of a monitoring slab or careful placement of the imaging volume is required. 3DPR data are acquired continuously throughout the examination using an eight-channel receiver and 1 s interleaved subframes. The data are reconstructed using 1 s segments for real-time monitoring with 0.8-cm isotropic spatial resolution over the entire torso, allowing full-volume axial, coronal, and sagittal MIPs to be displayed simultaneously with minimal latency. The system later uses the same scan data to generate high-spatial-resolution time-resolved sequences of the breath-hold interval. The 3D fluoroscopy system was validated on phantoms and human volunteers. Magn Reson Med, 2006. © 2006 Wiley-Liss, Inc. [source]


General algorithm for automated off-center MRI

MAGNETIC RESONANCE IN MEDICINE, Issue 1 2006
J. Magland
Abstract A general formula was derived that automatically modifies any MRI pulse sequence to realize arbitrary field-of-view (FOV) shifts. Unlike conventional techniques for implementing off-center MRI, the new method is completely automatic and can therefore be incorporated into the scanner hardware or software, thereby simplifying the development of MRI pulse sequences. The algorithm was incorporated into a visual pulse sequence programming environment, and several pulse sequences were programmed and tested at various off-center locations using the new technique. Unless there is significant background field inhomogeneity or gradient nonlinearity, research sequences employing the automatic technique need only be programmed and tested at the gradient isocenter, whereas with conventional methods, artifacts can sometimes depend on the position of the FOV. Magn Reson Med, 2006. © 2006 Wiley-Liss, Inc. [source]