Home About us Contact | |||
Scaffold Protein (scaffold + protein)
Selected AbstractsMammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cellsEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2008Frank Schmitz Abstract The mammalian target of rapamycin (mTOR) can be viewed as cellular master complex scoring cellular vitality and stress. Whether mTOR controls also innate immune-defenses is currently unknown. Here we demonstrate that TLR activate mTOR via phosphoinositide 3-kinase/Akt. mTOR physically associates with the MyD88 scaffold protein to allow activation of interferon regulatory factor-5 and interferon regulatory factor-7, known as master transcription factors for pro-inflammatory cytokine- and type I IFN-genes. Unexpectedly, inactivation of mTOR did not prevent but increased lethality of endotoxin-mediated shock, which correlated with increased levels of IL-1,. Mechanistically, mTOR suppresses caspase-1 activation, thus inhibits release of bioactive IL-1,. We have identified mTOR as indispensable component of PRR signal pathways, which orchestrates the defense program of innate immune cells. [source] Localization of the A kinase anchoring protein AKAP79 in the human hippocampusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2000Attila Sík Abstract The phosphorylation state of the proteins, regulated by phosphatases and kinases, plays an important role in signal transduction and long-term changes in neuronal excitability. In neurons, cAMP-dependent protein kinase (PKA), protein kinase C (PKC) and calcineurin (CN) are attached to a scaffold protein, A kinase anchoring protein (AKAP), thought to anchor these three enzymes to specific sites of action. However, the localization of AKAP, and the predicted sites of linked phosphatase and kinase activities, are still unknown at the fine structural level. In the present study, we investigated the distribution of AKAP79 in the hippocampus from postmortem human brains and lobectomy samples from patients with intractable epilepsy, using preembedding immunoperoxidase and immunogold histochemical methods. AKAP79 was found in the CA1, presubicular and subicular regions, mostly in pyramidal cell dendrites, whereas pyramidal cells in the CA3, CA2 regions and dentate granule cells were negative both in postmortem and in surgical samples. In some epileptic cases, the dentate molecular layer and hilar interneurons also became immunoreactive. At the subcellular level, AKAP79 immunoreactivity was present in postsynaptic profiles near, but not attached to, the postsynaptic density of asymmetrical (presumed excitatory) synapses. We conclude that the spatial selectivity for the action of certain kinases and phosphatases regulating various ligand- and voltage-gated channels may be ensured by the selective presence of their anchoring protein, AKAP79, at the majority of glutamatergic synapses in the CA1, but not in the CA2/CA3 regions, suggesting profound differences in signal transduction and long-term synaptic plasticity between these regions of the human hippocampus. [source] The proteasome inhibitor, MG132, promotes the reprogramming of translation in C2C12 myoblasts and facilitates the association of hsp25 with the eIF4F complexFEBS JOURNAL, Issue 17 2004Joanne L. Cowan The eukaryotic translation initiation factor (eIF) 4E, is regulated by modulating both its phosphorylation and its availability to interact with the scaffold protein, eIF4G, to form the mature eIF4F complex. Here we show that treatment of C2C12 myoblasts with the proteasomal inhibitor, MG132 (N -carbobenzoxyl-Leu-Leu-leucinal), resulted in an early decrease in protein synthesis rates followed by a partial recovery, reflecting the reprogramming of translation. The early inhibition of protein synthesis was preceded by a transient increase in eIF2, phosphorylation, followed by a sustained increase in eIF4E phosphorylation. Inhibition of eIF4E phosphorylation with CGP57380 failed to prevent translational reprogramming or the moderate decrease in eIF4F complexes at later times. Prolonged incubation with MG132 resulted in the increased expression of heat shock protein (hsp)25, ,B-crystallin and hsp70, with a population of hsp25 associating with the eIF4F complex in a p38 mitogen-activated protein kinase-dependent manner. Under these conditions, eIF4GI, and to a lesser extent eIF4E, re-localized from a predominantly cytoplasmic distribution to a more perinuclear and granular staining. Although MG132 had little effect on the colocalization of eIF4E and eIF4GI, it promoted the SB203580-sensitive association of eIF4GI and hsp25, an effect not observed with ,B-crystallin. Addition of recombinant hsp25 to an in vitro translation assay resulted in stimulation of on-going translation and a moderate decrease in de novo translation, indicating that this modified eIF4F complex containing hsp25 has a role to play in recovery of mRNA translation following cellular stress. [source] Roles of mammalian sterile 20-like kinase 2-dependent phosphorylations of Mps one binder 1B in the activation of nuclear Dbf2-related kinasesGENES TO CELLS, Issue 12 2009Yijun Bao Mammalian nuclear Dbf2-related (NDR) kinases (LATS1, LATS2, NDR1 and NDR2) play a role in cell proliferation, apoptosis and morphological changes. Mammalian sterile 20-like (MST) kinases and Mps one binder (MOB) proteins are important in the activation of NDR kinases. MOB1 is phosphorylated by MST1 and MST2 and this phosphorylation enhances the ability of MOB1 to activate NDR kinases. The phosphorylated MOB1 can be more effective as a scaffold protein to facilitate the MST-dependent phosphorylation of NDR kinases and/or as a direct activator of NDR kinases. We previously reported that Thr74 of MOB1B is phosphorylated by MST2. Thr12 and Thr35 have also been identified as phosphorylation sites. In this study, we quantified the phosphorylation of Thr74 using the phosphorylated Thr74-specific antibody. Thr74 is indeed phosphorylated by MST2, but the efficiency is low, suggesting that MOB1B can activate NDR kinases without the phosphorylation of Thr74. We also showed that the phosphorylated MOB1B activates NDR1 T444D and LATS2 T1041D, in which threonine residues phosphorylated by MST kinases are replaced with phosphorylation-mimicking aspartic acid, more efficiently than the unphosphorylated MOB1B does. This finding supports that the phosphorylation of MOB1B enhances its ability as a direct activator of NDR kinases. [source] Involvement of the MP1 scaffold protein in ERK signaling regulation during Drosophila wing developmentGENES TO CELLS, Issue 11 2008Emmanučle Mouchel-Vielh Mitogen-activated protein kinase (MAPK) cascades are evolutionary conserved transduction pathways involved in many cellular processes. Kinase modules are associated with scaffold proteins that regulate signaling by providing critical spatial and temporal specificities. Some of these scaffold proteins have been shown to be conserved, both in sequence and function. In mouse, the scaffold MP1 (MEK Partner 1) forms a signaling complex with MEK1 and ERK1. In this work, we focus on Drosophila MP1 (dMP1). We show that dMP1 is expressed ubiquitously during embryonic and larval development. By in vitro and in vivo experiments, we show that dMP1 is located in the cytoplasm and the nuclei, and that it interacts with MEK and ERK. Genetic studies with transgenic Drosophila lines allowing either dMP1 over-expression or dMP1 down-regulation by RNA interference highlight dMP1 function in the control of cell differentiation during development of the Drosophila wing. [source] The GTP binding protein Obg homolog ObgE is involved in ribosome maturationGENES TO CELLS, Issue 5 2005Aya Sato Obg proteins belong to a subfamily of GTP binding proteins, which are highly conserved from bacteria to human. Mutations of obgE genes cause pleiotropic defects in various species but the function remained unclear. Here we examine the function of ObgE, the Obg homolog in Escherichia coli. The growth rate correlates with the amount of ObgE in cells. Co-fractionation experiments further suggest that ObgE binds to 30S and 50S ribosomal subunits, but not to 70S ribosome. Pull-down assays suggest that ObgE associates with several specific ribosomal proteins of 30S and 50S subunits, as well as RNA helicase CsdA. Purified ObgE cosediments with 16S and 23S ribosomal RNAs in vitro in the presence of GTP. Finally, mutation of ObgE affects pre-16Sr-RNA processing, ribosomal protein levels, and ribosomal protein modification, thereby significantly reducing 70S ribosome levels. This evidence implicates that ObgE functions in ribosomal biogenesis, presumably through the binding to rRNAs and/or rRNA-ribosomal protein complexes, perhaps as an rRNA/ribosomal protein folding chaperone or scaffold protein. [source] GlcNAc6ST-1-mediated decoration of MAdCAM-1 protein with L-selectin ligand carbohydrates directs disease activity of ulcerative colitisINFLAMMATORY BOWEL DISEASES, Issue 5 2009Motohiro Kobayashi MD Abstract Background: A diffuse lymphocyte infiltrate is 1 of the characteristic features of ulcerative colitis (UC). Such lymphocyte recruitment requires lymphocyte rolling mediated by L-selectin ligand carbohydrates (6-sulfo sialyl Lewis X-capped O -glycans) and/or mucosal addressin cell adhesion molecule 1 (MAdCAM-1) expressed on high endothelial venule (HEV)-like vessels. The present study was undertaken to elucidate the role of MAdCAM-1 posttranslationally modified ("decorated") with L-selectin ligand carbohydrates in UC pathogenesis and consequent clinical outcomes. Methods: Biopsy specimens composed of active and remission phases of UC as well as normal colonic mucosa were immunostained for CD34, MAdCAM-1, and MECA-79, and the immunostained sections were quantitatively analyzed. Reverse-transcriptase polymerase chain reaction (RT-PCR) was carried out to evaluate transcripts of MAdCAM-1 and N -acetylglucosamine-6- O -sulfotransferases (GlcNAc6STs). CHO and Lec2 cells transfected with CD34 and MAdCAM-1 together with enzymes involved in L-selectin ligand carbohydrate biosynthesis were analyzed by immunofluorescence, FACS, and Western blotting to characterize the biochemical properties of GlcNAc6STs. Results: The number of MAdCAM-1+ vessels was increased in UC, with no significant difference between active and remission phases. An increased ratio of MECA-79+ to MAdCAM-1+ vessels with preferential GlcNAc6ST-1 transcripts was observed in the active phase of UC compared to the remission phase. MAdCAM-1 protein was colocalized with L-selectin ligand carbohydrates at the luminal surface of HEV-like vessels in situ. GlcNAc6ST-1 preferentially utilizes MAdCAM-1 as a scaffold protein for GlcNAc-6- O -sulfation in L-selectin ligand carbohydrate biosynthesis. Conclusions: UC disease activity is not regulated by expression of MAdCAM-1 protein itself, but rather by GlcNAc6ST-1-mediated decoration of MAdCAM-1 protein with L-selectin ligand carbohydrates. (Inflamm Bowel Dis 2008) [source] Mutations of the Wnt antagonist AXIN2 (Conductin) result in TCF-dependent transcription in medulloblastomasINTERNATIONAL JOURNAL OF CANCER, Issue 2 2007Arend Koch Abstract Medulloblastomas (MBs) represent the most common malignant brain tumors in children. Most MBs develop sporadically in the cerebellum, but their incidence is highly elevated in patients with familial adenomatous polyposis coli. These patients carry germline mutations in the APC tumor suppressor gene. APC is part of a multiprotein complex involved in the Wnt signaling pathway that controls the stability of ,-catenin, the central effector in this cascade. Previous genetic studies in MBs have identified mutations in genes coding for ,-catenin and its partners, APC and AXIN1, which cause activation of Wnt signaling. The pathway is negatively controlled by the tumor suppressor AXIN2 (Conductin), a scaffold protein of this signaling complex. To investigate whether alterations in AXIN2 may also be involved in the pathogenesis of sporadic MBs, we performed a mutational screening of the AXIN2 gene in 116 MB biopsy samples and 11 MB cell lines using single-strand conformation polymorphism and sequencing analysis. One MB displayed a somatic, tumor-specific 2 bp insertion in exon 5, leading to carboxy-terminal truncation of the AXIN2 protein. This tumor biopsy showed nuclear accumulation of ,-catenin protein, indicating an activation of Wnt signaling. In 2 further MB biopsies, mutations were identified in exon 5 (Glu408Lys) and exon 8 (Ser738Phe) of the AXIN2 gene, which are due to predicted germline mutations and rare polymorphisms. mRNA expression analysis in 22 MBs revealed reduced expression of AXIN2 mRNA compared to 8 fetal cerebellar tissues. Promoter hypermethylation could be ruled out as a major cause for transcriptional silencing by bisulfite sequencing. To study the functional role of AXIN2 in MBs, wild-type AXIN2 was overexpressed in MB cell lines in which the Wnt signaling pathway was activated by Wnt-3a. In this assay, AXIN2 inhibited Wnt signaling demonstrated in luciferase reporter assays. In contrast, overexpression of mutated AXIN2 with a deleted C-terminal DIX-domain resulted in an activation of the Wnt signaling pathway. These findings indicate that mutations of AXIN2 can lead to an oncogenic activation of the Wnt pathway in MBs. © 2007 Wiley-Liss, Inc. [source] A novel method for enzyme designJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 2 2009Xiaolei Zhu Abstract Rational design of enzymes is a stringent test of our understanding of protein structure and function relationship, which also has numerous potential applications. We present a novel method for enzyme design that can find good candidate protein scaffolds in a protein-ligand database based on vector matching of key residues. Residues in the vicinity of the active site were also compared according to a similarity score between the scaffold protein and the target enzyme. Suitable scaffold proteins were selected, and the side chains of residues around the active sites were rebuilt using a previously developed side-chain packing program. Triose phosphate isomerase (TIM) was used as a validation test for enzyme design. Selected scaffold proteins were found to accommodate the enzyme active sites and successfully form a good transition state complex. This method overcomes the limitations of the current enzyme design methods that use limited number of protein scaffold and based on the position of ligands. As there are a large number of protein scaffolds available in the Protein Data Band, this method should be widely applicable for various types of enzyme design. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009 [source] Phosphorylation-dependent dimerization and subcellular localization of islet-brain 1/c-Jun N-terminal kinase-interacting protein 1JOURNAL OF NEUROSCIENCE RESEARCH, Issue 16 2007T. Borsello Abstract Islet-brain 1 [IB1; also termed c-Jun N-terminal kinase (JNK)-interacting protein 1 (JIP-1] is involved in the apoptotic signaling cascade of JNK and functions as a scaffold protein. It organizes several MAP kinases and the microtubule-transport motor protein kinesin and relates to other signal-transducing molecules such as the amyloid precursor protein. Here we have identified IB1/JIP-1 using different antibodies that reacted with either a monomeric or a dimeric form of IB1/JIP-1. By immunoelectron microscopy, differences in the subcellular localization were observed. The monomeric form was found in the cytoplasmic compartment and is associated with the cytoskeleton and with membranes, whereas the dimeric form was found in addition in nuclei. After treatment of mouse brain homogenates with alkaline phosphatase, the dimeric form disappeared and the monomeric form decreased its molecular weight, suggesting that an IB1/JIP-1 dimerization is phosphorylation dependent and that IB1 exists in several phospho- forms. N-methyl-D-aspartate receptor activation induced a dephosphorylation of IB1/JIP-1 in primary cultures of cortical neurons and reduced homodimerization. In conclusion, these data suggest that IB1/JIP-1 monomers and dimers may differ in compartmental localization and thus function as a scaffold protein of the JNK signaling cascade in the cytoplasm or as a transcription factor in nuclei. © 2007 Wiley-Liss, Inc. [source] 4145: Analysis of mouse eye mutants as models for human diseasesACTA OPHTHALMOLOGICA, Issue 2010S JADEJA Purpose The Eumodic (European Mouse Disease Clinic) project screens mouse knockout lines and ENU induced mutants for pathological phenotypes. Initially 2 of the strains identified with an eye defect by the Sanger MGP and a strain from the ENU mutagenesis screen at MRC Harwell have been selected for further investigation. Methods Following the initial primary phenotyping, pathology; histology; and immunohistochemistry was carried out on ocular tissue collected from mutant and control animals to determine defects in eye structure and development. This gave an indication to the underlying cause of the defects seen, enabling further molecular biology analysis. Results Btb/Poz Domain-containing Protein 12 (Btbd12) is a scaffold protein required for the formation of DNA repair complexes. The mouse knockout of this gene shows corneal opacity, dilated pupils and occasional microphthalmia, modelling the phenotypes seen in human diseases of defective DNA repair. The corneas of the mutant animals exhibit increased DNA damage which is likely to be the cause of the opacification. Solute Carrier Family 9 Member 8 (Slc9a8) is a Sodium/ Hydrogen exchanger and has previously been shown to play a role in ion exchange. The Slc9a8 knockout strain appears to have retinal degeneration and the males are infertile. The ENU-induced mutant Pedv128 exhibits defects in the retinal vasculature including defective vascular patterning and increased vascular leakage. Of particular interest is that this vascular phenotype is restricted to the eyes. Conclusion Investigation of mouse eye mutants can result in a better understanding of the pathology and underlying causes of human diseases. [source] Interaction of LDL receptor-related protein 4 (LRP4) with postsynaptic scaffold proteins via its C-terminal PDZ domain-binding motif, and its regulation by Ca2+/calmodulin-dependent protein kinase IIEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2006Qing-Bao Tian No abstract is available for this article. [source] Involvement of the MP1 scaffold protein in ERK signaling regulation during Drosophila wing developmentGENES TO CELLS, Issue 11 2008Emmanučle Mouchel-Vielh Mitogen-activated protein kinase (MAPK) cascades are evolutionary conserved transduction pathways involved in many cellular processes. Kinase modules are associated with scaffold proteins that regulate signaling by providing critical spatial and temporal specificities. Some of these scaffold proteins have been shown to be conserved, both in sequence and function. In mouse, the scaffold MP1 (MEK Partner 1) forms a signaling complex with MEK1 and ERK1. In this work, we focus on Drosophila MP1 (dMP1). We show that dMP1 is expressed ubiquitously during embryonic and larval development. By in vitro and in vivo experiments, we show that dMP1 is located in the cytoplasm and the nuclei, and that it interacts with MEK and ERK. Genetic studies with transgenic Drosophila lines allowing either dMP1 over-expression or dMP1 down-regulation by RNA interference highlight dMP1 function in the control of cell differentiation during development of the Drosophila wing. [source] SMC Proteins at the Crossroads of Diverse Chromosomal ProcessesIUBMB LIFE, Issue 12 2003Rolf Jessberger Abstract How should a protein be designed to serve in processes as diverse as chromosome condensation, sister chromatid cohesion, DNA recombination, gene dosage regulation, and perhaps even gene silencing or transcriptional regulation - which occur in both mitosis and meiosis? Such a protein or protein complex needs to bear DNA interaction domains, it needs the capacity to use energy to move DNA, it needs to enter into highly specific protein interactions, it needs to be large enough to link two DNA molecules, it needs to be of sufficient flexibility to cope with different types of chromatin structure, yet it also needs to be rigid enough to pull, push or enclose DNA. SMC proteins fulfill these requirements and form the core units of high molecular weight complexes that act in all those processes, and are essential for some of them. SMC stands for 'Structural Maintenance of Chromosomes', although SMC proteins are not static scaffold proteins merely providing support for a particular chromosome structure. SMC proteins are rather highly dynamic actors, that generate and modulate chromosome structures, affecting a plethora of biological processes. IUBMB Life, 55: 643-652, 2003 [source] A novel method for enzyme designJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 2 2009Xiaolei Zhu Abstract Rational design of enzymes is a stringent test of our understanding of protein structure and function relationship, which also has numerous potential applications. We present a novel method for enzyme design that can find good candidate protein scaffolds in a protein-ligand database based on vector matching of key residues. Residues in the vicinity of the active site were also compared according to a similarity score between the scaffold protein and the target enzyme. Suitable scaffold proteins were selected, and the side chains of residues around the active sites were rebuilt using a previously developed side-chain packing program. Triose phosphate isomerase (TIM) was used as a validation test for enzyme design. Selected scaffold proteins were found to accommodate the enzyme active sites and successfully form a good transition state complex. This method overcomes the limitations of the current enzyme design methods that use limited number of protein scaffold and based on the position of ligands. As there are a large number of protein scaffolds available in the Protein Data Band, this method should be widely applicable for various types of enzyme design. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009 [source] Developmental roles for Homer: more than just a pretty scaffoldJOURNAL OF NEUROCHEMISTRY, Issue 1 2009Lisa Foa Abstract Homer proteins are best known as scaffold proteins at the post-synaptic density where they facilitate synaptic signalling and are thought to be required for learning and memory. Evidence implicating Homer proteins in the development of the nervous system is also steadily accumulating. Homer is highly conserved and is expressed at key developmental time points in the nervous system of several species. Homer regulates intracellular calcium homeostasis, clustering and trafficking of receptors and proteins at the cytosolic surface of the plasma membrane, transcription and translation, and cytoskeletal organization. Each of these functions has obvious potential to regulate neuronal development, and indeed Homer is implicated in several pathologies associated with the developing nervous system. Current data justify more critical experimental approaches to the role of Homer in the developing nervous system and related neurological disorders. [source] SYMPOSIUM REVIEW: Lipid microdomains and the regulation of ion channel functionTHE JOURNAL OF PHYSIOLOGY, Issue 17 2010Caroline Dart Many types of ion channel localize to cholesterol and sphingolipid-enriched regions of the plasma membrane known as lipid microdomains or ,rafts'. The precise physiological role of these unique lipid microenvironments remains elusive due largely to difficulties associated with studying these potentially extremely small and dynamic domains. Nevertheless, increasing evidence suggests that membrane rafts regulate channel function in a number of different ways. Raft-enriched lipids such as cholesterol and sphingolipids exert effects on channel activity either through direct protein,lipid interactions or by influencing the physical properties of the bilayer. Rafts also appear to selectively recruit interacting signalling molecules to generate subcellular compartments that may be important for efficient and selective signal transduction. Direct interaction with raft-associated scaffold proteins such as caveolin can also influence channel function by altering gating kinetics or by affecting trafficking and surface expression. Selective association of ion channels with specific lipid microenvironments within the membrane is thus likely to be an important and fundamental regulatory aspect of channel physiology. This brief review highlights some of the existing evidence for raft modulation of channel function. [source] BTB and TAZ domain scaffold proteins perform a crucial function in Arabidopsis developmentTHE PLANT JOURNAL, Issue 1 2009Hélčne S. Robert Summary In Arabidopsis, bric-a-brac, tramtrack and broad (BTB) domain scaffold proteins form a family of 80 proteins that have involvement in various signaling pathways. The five members of the subfamily of BTB AND TAZ DOMAIN proteins (BT1,BT5) have a typical domain structure that is only observed in land plants. Here, we present a functional analysis of the BT family, of which at least four members are encoded by auxin-responsive genes. BT1 is a short-lived protein that is characteristically targeted for degradation by the 26S proteasome. Expression pattern, gene structure and sequence analyses indicate that BT1 and BT2 are closely related. They both localize to the nucleus and the cytosol, whereas the remaining BT proteins were determined as cytosolic proteins. Detailed molecular and phenotypic analysis of plants segregating for null mutations in the BT family revealed substantial redundancy among the BT members, and highlighted that BT proteins perform crucial roles in both male and female gametophyte development. BT2 seems to be the predominant gene in this process, in which it is functionally replaced by BT3 and BT1 through reciprocal transcription regulation. Compensational expression alters the steady-state mRNA levels among the remaining BT family members when other BT members are lost, and this contributes towards functional redundancy. Our data provide a surprising example of functional redundancy among genes required during gametophyte development, something that could not be detected in the current screens for gametophyte mutants. [source] Dynamic alterations of the extracellular environment of ovarian surface epithelial cells in premalignant transformation, tumorigenicity, and metastasisCANCER, Issue 8 2002Callinice D. Capo-Chichi Ph.D. Abstract BACKGROUND Ovarian surface epithelial cells are positionally organized as a single cell layer by a sheet of basement membrane. It is believed that the contact of the ovarian surface epithelial cells with the basement membrane regulates cell growth and ensures the organization of the epithelium. Disabled-2 (Dab2), a signal transduction protein and a candidate tumor suppressor of ovarian carcinoma, functions in positional organization of ovarian surface epithelial cells. In ovarian carcinomas, genetic and epigenetic changes enable the tumor cells to escape positional control and proliferate in a disorganized fashion. Alterations in the extracellular environment may also be critical for tumor initiation and progression. METHODS We analyzed and compared the presence of collagen IV and laminin, the scaffold proteins of the basement membrane, and Dab2 in 50 ovarian tumors that are restricted to the ovaries and in 50 metastases of ovarian tumors by immunohistochemistry. Expression of collagen IV, laminin, and Dab2 was also analyzed by Northern blotting in a panel of human ovarian surface epithelial and cancer cell lines. RESULTS The basement membrane is often absent in morphologically benign ovarian surface and cyst epithelium and low-grade tumors and collagen IV and laminin are absent in the extracellular matrix of most of the primary tumors tested. Of the 50 ovarian tumors confined to the ovaries, 6% (3 of 50) were collagen IV positive and 24% (12 of 50) were laminin positive tumors. Of the 50 metastatic tumors, 16% (8 of 50) are collagen IV positive and 86% (43 of 50) are laminin positive. In addition, even in the metastatic ovarian tumors that are largely collagen IV negative, there are pockets of local areas in which the tumor cells are surrounded by collagen IV-positive staining. Dab2 is absent in the majority of ovarian tumors found in both ovaries and metastatic sites. In both nontumorigenic human ovarian surface epithelial and cancer cell lines, collagen IV, laminin, and Dab2 are expressed aberrantly. CONCLUSIONS Loss of the basement membrane may be an early event in the preneoplastic transformation of ovarian surface epithelium and in the early stages of tumorigenesis before tumor invasion and metastasis. The majority of primary ovarian tumors examined lack collagen IV and laminin in their extracellular matrix. However, expression of laminin is restored in the majority of metastatic tumors. Reexpression of collagen IV may also contribute to tumor metastasis. The ability of tumor cells to dynamically alter the expression of collagen IV and laminin may facilitate the shedding of cancer cells into the peritoneal spaces and subsequent attachment to the metastatic sites. We propose that loss of collagen IV and laminin may be an initial event in ovarian tumorigenicity and that restoration of collagen IV and laminin expression in the later stages of tumor development may promote metastasis of ovarian tumors. Cancer 2002;95:1802,15. © 2002 American Cancer Society. DOI 10.1002/cncr.10870 [source] |