Sativa L. (sativa + l)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Sativa L.

  • avena sativa l.
  • cannabis sativa l.
  • lactuca sativa l.
  • medicago sativa l.
  • oryza sativa l.


  • Selected Abstracts


    MODELING VARIETAL EFFECT ON THE WATER UPTAKE BEHAVIOR OF MILLED RICE (ORYZA SATIVA L.) DURING SOAKING

    JOURNAL OF FOOD PROCESS ENGINEERING, Issue 6 2007
    B.K. YADAV
    ABSTRACT Milled rice is soaked until saturation before cooking and other processing. The soaking behavior of the milled rice is affected by varietal factor as well as initial moisture content (M0) of the samples. In the present study, tests were performed for milled whole kernels of 10 rice varieties ranging from low to high amylose content (16,29% d.b.) with three initial moisture levels (approximately 8, 12 and 16% d.b.) for monitoring water uptake in rice kernels during soaking at room temperature (25 ± 1C), in relation to the varietal differences manifested by the physicochemical properties. The water uptake by milled rice kernels took place at a faster rate in the beginning and was followed by a diminishing rate finally leading to a saturated value during soaking. The water uptake of the kernels during soaking could be best expressed by a modified exponential relationship with R2 values ranging from 0.971 to 0.998 for all varieties. The slope of the fitted straight line between actual and estimated moisture contents of milled rice during soaking using a modified exponential relationship was about unity (0.998) with a high R2 value of 0.989 and a root mean square error of 1.2% d.b. The parameters of the fitted model were the function of the M0 and the physicochemical properties of the milled rice. Using developed relationship, the water uptake of the milled rice during soaking could be estimated from its M0 and the physicochemical properties within±10% of the actual values. PRACTICAL APPLICATIONS This information would be useful for the scientific world working on the soaking characteristics of various varieties of rice, mainly for the modeling of the soaking process. It could also be used as a tool in selecting the rice varieties to meet their desired water uptake properties in relation to their psychochemical properties by rice breeder scientists. [source]


    Plant preference in relation to life history traits in the zoophytophagous predator Dicyphus hesperus

    ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2004
    Juan Antonio Sanchez
    Abstract Dicyphus hesperus Knight (Heteroptera: Miridae) is an omnivorous predator used to control pests of greenhouse vegetables. Plant preferences and life history traits were studied using nine plant species: Lycopersicon esculentum Mill. (Solanaceae), Capsicum annuum L. (Solanaceae), Verbascum thapsus L. (Scrophulariaceae), Nepeta cataria L. (Lamiaceae), Stachys albotomentosa (Lamiaceae), Nicotiana tabacum L. (Solanaceae), Vicia sativa L. (Fabaceae), Zea mays L. (Gramineae), and Chrysanthemum coronarium L. (Asteraceae). Plants were selected from among potential target crops, natural hosts, plants used for mass rearing, and plants on which D. hesperus has not been reported. Plant preference was measured by multi-choice host plant selection and oviposition assays. Development and reproduction were measured on each of the plant species on both a plant diet alone and on a plant diet supplemented with Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs. Dicyphus hesperus females and nymphs expressed a preference for some plants over others. Plant preference ranged from low preference plants, such as Z. mays, V. sativa, C. coronarium, and C. annuum, to high preference plants such as V. thapsus, N. tabacum, and S. albotomentosa. When E. kuehniella eggs were supplied, there were few differences in the development time and fecundity of D. hesperus among plants, with the exception of corn and broad bean, where fecundity was lower. On a plant diet alone, nymphs were able to complete their development on V. thapsus, C. annuum, and N. cataria. However, mortality and development time were much lower on V. thapsus than on C. annuum and N. cataria. On most of the plant species D. hesperus did not lay any eggs when fed on a plant diet alone. On V. thapsus, females laid a few eggs and lived longer than when fed on prey. Dicyphus hesperus females tended to prefer host plants on which nymph survival without prey was greatest. [source]


    Forty-nine new host plant species for Bemisia tabaci (Hemiptera: Aleyrodidae)

    ENTOMOLOGICAL SCIENCE, Issue 4 2008
    Alvin M. SIMMONS
    Abstract The sweetpotato whitefly, Bemisia tabaci (Gennadius), is a worldwide pest of numerous agricultural and ornamental crops. In addition to directly feeding on plants, it also acts as a vector of plant viruses of cultivated and uncultivated host plant species. Moreover, host plants can affect the population dynamics of whiteflies. An open-choice screening experiment was conducted with B-biotype B. tabaci on a diverse collection of crops, weeds, and other indigenous plant species. Five of the plant species were further evaluated in choice or no-choice tests in the laboratory. The results reveal 49 new reproductive host plant species for B. tabaci. This includes 11 new genera of host plants (Arenaria, Avena, Carduus, Dichondra, Glechoma, Gnaphalium, Molugo, Panicum, Parthenocissus, Trianthema, and Triticum) for this whitefly. All species that served as hosts were acceptable for feeding, oviposition, and development to the adult stage by B. tabaci. The new hosts include three cultivated crops [oats (Avena sativa L.), proso millet (Panicum miliaceum L.), and winter wheat (Triticum aestivum L.)], weeds and other wild species, including 32 Ipomoea species, which are relatives of sweetpotato [I. batatas (L.) Lam.)]. Yellow nutsedge, Cyperus esculentus L., did not serve as a host for B. tabaci in either open-choice or no-choice tests. The results presented herein have implications for whitefly ecology and the numerous viruses that B. tabaci spreads to and among cultivated plants. [source]


    Effect of bacteria-mineral water produced from bio-reacted fowl dung on seed germination of wheat (Triticum aestivum) and rice (Oryza sativa L.)

    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 1 2008
    Wenyuan He
    Abstract Positive effects of Bacteria-mineral water (BMW) produced from bio-reacted manure on plant growth and crop seed germination has been observed in agriculture practices. The experiment was conducted to examine the effects of BMW produced from bio-reacted fowl dung on seed germination of rice (Oryza sativa L.) and wheat (Triticum aestivum). Seeds were soaked in BMW at concentrations of 100, 10, 1, 0.5, 0.25, 0.125, 0.025, and 0% (control) and then incubated at 25°C ± 1°C in a seed germinator for 7 days. All BMW treatments not only enhanced germination energy and final germination percentage of wheat and rice seeds, but also significantly improved (P < 0.05) seed vigor index (VI). Compared to control, treatment with 0.25% BMW had significant effects (P < 0.05) on final germination percentage and increased significantly seed germination percentage (7.34%) and germination energy (8.67%) of wheat seeds. There were strong correlations between germination energy and final germination percentage (P < 0.05), germination index (P < 0.05), VI (P < 0.05), water absorption rate (P < 0.01), and storage reserve transform rate (P < 0.01). While for rice seeds, 0.25% and 0.125% BMW treatments significantly improved (P < 0.05) final germination percentage by 8% separately, and germination energy enhanced 8.66% and 9.33% respectively. There were strong correlations between germination energy (and final germination percentage) and other parameters except for water adsorption rate and storage reserve loss rate. BMW consistently showed positive effects on crop seed germination. 0.25% BMW treatment may be the best concentration to stimulate wheat (Triticum aestivum) seeds germination, while 0.125,0.25% BMW would be the most suitable concentration range for rice (Oryza sativa L.) seeds. © 2008 American Institute of Chemical Engineers Environ Prog, 2008 [source]


    Toxicity of methyl tert butyl ether to soil invertebrates (springtails: Folsomia candida, Proisotoma minuta, and Onychiurus folsomi) and lettuce (Lactuca sativa)

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2010
    Matthew Dodd
    Abstract Experiments were conducted to assess the toxicity of methyl tert butyl ether (MTBE) to three species of Collembola (Proisotoma minuta, Folsomia candida, and Onychiurus folsomi) and lettuce (Lactuca sativa L.) using an artificial Organization for Economic Cooperation and Development (OECD) soil and field-collected sandy loam and silt loam soil samples. Soil invertebrate tests were carried out in airtight vials to prevent volatilization of MTBE out of the test units and to allow for direct head-space sampling and gas chromatography-mass spectrometry (GC-MS) analysis for residual MTBE. The use of the airtight vial protocol proved to be very successful, in that the measured MTBE concentrations at the beginning of the experiments were within 95% of nominal concentrations. The test methods used in this study could be used to test the toxicity of other volatile organic compounds to Collembola. The soil invertebrates tested had inhibitory concentration (ICx) and lethal concentration (LCx) values that ranged from 242 to 844 mg MTBE/kg dry soil. When the three test species of Collembola were tested under identical conditions in the artificial OECD soil, O. folsomi was the most sensitive collembolan, with a median inhibitory concentration (IC50; reproduction) of 296 mg MTBE/kg dry soil. The most sensitive endpoint for lettuce was an IC50 for root length of 81 mg MTBE/kg dry soil after 5 d of germination in OECD soil. Data on the loss of MTBE from the three test soils over time indicated that MTBE was retained in the silt loam soil longer than in either the sandy loam or the artificial OECD soil. Environ. Toxicol. Chem. 2010;29:338,346. © 2009 SETAC [source]


    Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2003
    Andrew C. P. Heaton
    Abstract Mercury contamination of soil and water is a serious problem at many sites in the United States and throughout the world. Plant species expressing the bacterial mercuric reductase gene, merA, convert ionic mercury, Hg(II), from growth substrates to the less toxic metallic mercury, Hg(0). This activity confers mercury resistance to plants and removes mercury from the plant and substrates through volatilization. Our goal is to develop plants that intercept and remove Hg(II) from polluted aquatic systems before it can undergo bacterially mediated methylation to the neurotoxic methylmercury. Therefore, the merA gene under the control of a monocot promoter was introduced into Oryza sativa L. (rice) by particle gun bombardment. This is the first monocot and first wetland-adapted species to express the gene. The merA -expressing rice germinated and grew on semisolid growth medium spiked with sufficient Hg(II) to kill the nonengineered (wild-type) controls. To confirm that the resistance mechanism was the conversion of Hg(II) to Hg(0), seedlings of merA -expressing O. sativa were grown in Hg(II)-spiked liquid medium or water-saturated soil media and were shown to volatilize significantly more Hg(0) than wild-type counterparts. Further genetic manipulation could yield plants with increased efficiency to extract soil Hg(II) and volatilize it as Hg(0) or with the novel ability to directly convert methylmercury to Hg(0). [source]


    Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment

    GLOBAL CHANGE BIOLOGY, Issue 6 2003
    HAN-YONG KIM
    Abstract Over time, the stimulative effect of elevated CO2 on the photosynthesis of rice crops is likely to be reduced with increasing duration of CO2 exposure, but the resultant effects on crop productivity remain unclear. To investigate seasonal changes in the effect of elevated CO2 on the growth of rice (Oryza sativa L.) crops, a free air CO2 enrichment (FACE) experiment was conducted at Shizukuishi, Iwate, Japan in 1998,2000. The target CO2 concentration of the FACE plots was 200 µmol mol,1 above that of ambient. Three levels of nitrogen (N) were supplied: low (LN, 4 g N m,2), medium [MN, 8 (1998) and 9 (1999, 2000) g N m,2] and high N (HN, 12 and 15 g N m,2). For MN and HN but not for LN, elevated CO2 increased tiller number at panicle initiation (PI) but this positive response decreased with crop development. As a result, the response of green leaf area index (GLAI) to elevated CO2 greatly varied with development, showing positive responses during vegetative stages and negative responses after PI. Elevated CO2 decreased leaf N concentration over the season, except during early stage of development. For MN crops, total biomass increased with elevated CO2, but the response declined linearly with development, with average increases of 32, 28, 21, 15 and 12% at tillering, PI, anthesis, mid-ripening and grain maturity, respectively. This decline is likely to be due to decreases in the positive effects of elevated CO2 on canopy photosynthesis because of reductions in both GLAI and leaf N. Up to PI, LN-crops tended to have a lower response to elevated CO2 than MN- and HN-crops, though by final harvest the total biomass response was similar for all N levels. For MN- and HN-crops, the positive response of grain yield (ca. 15%) to elevated CO2 was slightly greater than the response of final total biomass while for LN-crops it was less. We conclude that most of the seasonal changes in crop response to elevated CO2 are directly or indirectly associated with N uptake. [source]


    Agronomic performance and nutritive value of common and alternative grass and legume species in the Peruvian highlands

    GRASS & FORAGE SCIENCE, Issue 2 2009
    K. Bartl
    Abstract The agronomic performance and nutritive value of twelve annual and perennial grasses and legumes were analysed in order to define alternatives to local forages for dry-season feeding of ruminants in the Peruvian Andes. There were twelve species and two fertilizer treatments (no fertilizer and a N;P;K fertilizer mainly applied at sowing) in an experiment with a randomized complete block design with three replicates at each of two sites. Plant height, soil cover by forage and weed species, frost damage, dry matter (DM) yield and nutritive value of herbage were evaluated in 2005 and 2006. Among the annual species, Hordeum vulgare L. cv. UNA 80 and ×Triticosecale Wittm. had the highest DM yields when fertilized (8226 and 6934 kg ha,1 respectively). Without fertilizer the alternative cultivars had similar DM yields to that of the local forages. Cultivars of Avena sativa L. had lower concentrations of neutral-detergent fibre (NDF) (557 g kg,1 DM) and higher concentrations of predicted net energy for lactation (5·86 MJ kg,1 DM) than the other annual grass species (625 g kg,1 DM and 5·01 MJ kg,1 DM respectively), while the legumes were superior in concentrations of crude protein (277 g kg,1 DM) and NDF (362 g kg,1 DM). Considering the low agronomic performance of the perennial forages, a mixture of fertilized annual grasses and legumes appears the most appropriate approach to meeting the demand for forage of high nutritive value in the Peruvian highlands. [source]


    Effects of tractor wheeling on root morphology and yield of lucerne (Medicago sativa L.)

    GRASS & FORAGE SCIENCE, Issue 3 2008

    Summary The purpose of this study was to determine the effect of soil compaction on the herbage yield and root growth of lucerne (Medicago sativa L.). A field experiment was conducted on a silty loam Mollic Fluvisols soil in 2003,2006. Herbage yield and root morphology, in terms of root length density, mean root diameter, specific root length and distribution of dry matter (DM) in roots, were measured. Four compaction treatments were applied three times annually by tractor using the following number of passes: control without experimental traffic, two passes, four passes and six passes. The tractor traffic changed the physical properties of the soil by increasing bulk density and penetration resistance. Soil compaction also improved its water retention properties. These changes were associated with changes in root morphology and distribution of the DM in roots. Soil compaction resulted in higher proportions of the DM in roots, especially in the upper, 0,10 cm, soil horizon. Decreases in the root length density were observed in a root diameter range of 0·1,1·0 mm. It was also found that roots in a more compacted soil were significantly thicker. An effect of the root system of lucerne on soil compaction was observed. The root system of lucerne decreased the effects of soil compaction that had been recorded in the first and the second year of the experiment. An increase in the number of passes resulted in a decrease in the DM yield of herbage in the second and third harvests each year. [source]


    Contrasting infection frequencies of Neotyphodium endophyte in naturalized Italian ryegrass populations in Japanese farmlands

    GRASSLAND SCIENCE, Issue 2 2010
    Masayuki Yamashita
    Abstract Neotyphodium endophytes often confer benefits to their host grasses and may enhance invasiveness of some grasses. The knowledge of infection frequencies of endophytes among invading weed populations is necessary to understand the relationships between endophyte infection and invasiveness. Here we present data on infection frequencies of Italian ryegrass (Lolium multiflorum Lam.), an important weed in some farmlands in Japan, persisting in contrasting farmlands: a terraced paddy field and a wheat-soybean double-cropped field in the western region of Shizuoka prefecture, Japan. The terraced paddy site is a mosaic of several landscape elements such as paddy fields, levees, fallow and abandoned fields, with a high percentage of non-crop area. Rice (Oryza sativa L.) has been cultivated for more than a decade with no application of chemical fertilizers, pesticides and fungicides. The wheat-soybean field is characterized by the aggregation of large-scaled fields that were originally reconstructed paddy fields, showing a low percentage of non-crop area. Wheat and soybean have been grown as winter and summer crops, respectively, using chemical fertilizers and herbicides. We examined the presence or absence of endophytes in a total of 1200 seeds sampled from the two Italian ryegrass populations. The terraced paddy population exhibited a markedly high infection frequency (91.0%), due possibly to selective feeding of non-infected seeds by insects. In contrast, the wheat-soybean farmland population showed almost no infection (1.1%), whereas the putative source of the invasion in the proximity exhibited a relatively high infection rate (64.4%). Such a micro-scale variation in infection frequencies may be attributable to a loss in endophyte viability within the wheat-soybean field. The findings suggest that endophyte infection frequency may markedly differ among the Italian ryegrass populations even within the same region, presumably depending on the abundance of the seed-eating insects, farmland management regimes and/or environmental conditions such as soil humidity. [source]


    Ensilage of wilted whole crop rice (Oryza sativa L.) using a roll baler for chopped material: Silage quality in long-term storage

    GRASSLAND SCIENCE, Issue 2 2007
    Hidenori Kawamoto
    Abstract We examined the effects of long-term storage on the fermentation quality, chemical composition, and digestibility of wilted whole crop rice silage prepared using a roll baler for chopped material (set chop length, 13 mm) and compared the results with those obtained by using a conventional roll baler. The roll balers were used for ensiling whole crop rice of three types: (i) dough-ripe stage with light wilting (45% dry matter); (ii) dough-ripe stage with heavy wilting (65% dry matter); and (iii) yellow-ripe stage with light wilting (45% dry matter). The apparent dry matter density was higher in the ensiled roll bales composed of chopped whole crop rice (chopped bales) than in those composed of non-chopped whole crop rice (conventional bales) (195,250 kg m,3 vs 156,218 kg m,3, respectively). The formation of volatile fatty acids and ammonia-nitrogen was low in all types of silage. Further, no marked differences in the chemical composition and apparent dry matter digestibility were observed between silage from the two types of bales. However, there were significant differences in their lactic acid and ethanol contents. The lactic acid production in the conventional silage was low (0.08,0.14% fresh matter), whereas that in the chopped silage was high (0.71,0.97% fresh matter). A lower pH value (pH 4.0,4.3) was retained in the chopped silage after 10 months of storage. High ethanol production (1.1,2.5% fresh matter) was observed in the conventional silage, whereas ethanol production decreased to less than 1% in the chopped silage. These results indicate that although the ethanol fermentation is readily enhanced in the ensilage of wilted whole crop rice performed by a conventional baler, the ensilage performed by a baler for chopped material encourages lactic acid fermentation and suppresses ethanol production over a wide moisture range throughout the long-term storage. [source]


    Functional and structural properties and in vitro digestibility of acylated hemp (Cannabis sativa L.) protein isolates

    INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 12 2009
    Shou-Wei Yin
    Summary The effects of succinylation and acetylation on some functional, structural properties and in vitro trypsin digestibility of hemp protein isolate (HPI) were investigated. The extent of acylation gradually increased from 0 to 60,70%, with the anhydride-to-protein ratio increasing from 0 to 1.0 g g,1. Size exclusion chromatography showed that succinylation led to formation of more soluble protein aggregate than acetylation, especially at anhydride levels higher than 0.1 g g,1. Succinylation led to gradual increase in protein solubility (PS) from 30 to 85,90%, while in the acetylation case, the PS was improved only at low anhydride levels, increasing from 30 to about 50% with anhydride-to-protein ratio increasing from 0 to 0.2 g g,1. At neutral pH, the emulsifying activity indexes (EAI) of HPI was 22.1 m2 g,1, and the EAI linearly and significantly increased with the extent of acylation. The EAIs of succinylated and acetylated HPI (1.0 g g,1) were 119.0 and 54.4 m2 g,1, respectively. Differential scanning calorimetry (DSC) and intrinsic fluorescence spectrum analyses indicated gradual structural unfolding of proteins, or exposure of hydrophobic clusters to the solvent, especially at higher anhydride levels. Additionally, the in vitro trypsin digestibility was significantly improved by the succinylation. The results indicated that the chemical acylation treatment (especially succinylation) could be applied to modify some selected functional properties of hemp proteins, especially PS and emulsifying ability. [source]


    DROUGHT STRESS: Comparative Time Course Action of the Foliar Applied Glycinebetaine, Salicylic Acid, Nitrous Oxide, Brassinosteroids and Spermine in Improving Drought Resistance of Rice

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 5 2010
    M. Farooq
    Abstract Worldwide rice productivity is being threatened by increased endeavours of drought stress. Among the visible symptoms of drought stress, hampered water relations and disrupted cellular membrane functions are the most important. Exogenous use of polyamines (PAs), salicylic acid (SA), brassinosteroids (BRs), glycinebetaine (GB) and nitrous oxide (NO) can induce abiotic stresses tolerance in many crops. In this time course study, we appraised the comparative role of all these substances to improve the drought tolerance in rice (Oryza sativa L.) cultivar Super-Basmati. Plants were subjected to drought stress at four leaf stage (4 weeks after emergence) by maintaining soil moisture at 50 % of field capacity. Pre-optimized concentrations of GB (150 mg l,1), SA (100 mg l,1), NO (100 ,mol l,1 sodium nitroprusside as NO donor), BR (0.01 ,m 24-epibrassinolide) and spermine (Spm; 10 ,m) were foliar sprayed at five-leaf stage (5 weeks after emergence). There were two controls both receiving no foliar spray, viz. well watered (CK1) and drought stressed (CK2). There was substantial reduction in allometric response of rice, gas exchange and water relation attributes by drought stress. While drought stress enhanced the H2O2, malondialdehyde (MDA) and relative membrane permeability, foliar spray of all the chemicals improved growth possibly because of the improved carbon assimilation, enhanced synthesis of metabolites and maintenance of tissue water status. Simultaneous reduction in H2O2 and MDA production was also noted in the plants treated with these substances. Drought tolerance was sturdily associated with the greater tissue water potential, increased synthesis of metabolites and enhanced capacity of antioxidant system. Of all the chemicals, foliar spray with Spm was the most effective followed by BR. [source]


    Effects of Water Shortage and Air Temperature on Seed Yield and Seed Performance of Lucerne (Medicago sativa L.) in a Mediterranean Environment

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 6 2009
    A. J. Karamanos
    Abstract Seed production and performance of lucerne is characterized by fluctuating yields with often poor seed quality, and is dependent on environmental conditions, genetic characteristics and agronomic techniques applied during seed set, development, maturation and storage. A field experiment was carried out in two successive growing seasons at Kopais (southern Greece) to evaluate the effects of drought stress imposed by three irrigation treatments, and temperature during flowering and seed filling on lucerne seed yield and quality. Plant water status, expressed in terms of the water potential index (WPI), growth in leaf area and dry weight, seed yield and yield components, flowering and seed quality parameters were measured throughout the growing seasons. The adopted irrigation schemes produced a clear differentiation among treatments concerning their plant water status. Seed yield and leaf growth showed close positive correlations with WPI. An irrigation effect was also detected for the number of pods/plant, but not for the average weight of seeds/pod. Less negative values of WPI, and, especially, higher temperatures during flowering were also positively associated with a longer duration of flowering, as well as with higher total numbers of inflorescences. A very good description of the time course of seed germination was performed by fitting the Richards' function to the real data. By examining the germination parameters derived from this function it was found that final germination and germination rate were improved, while germination duration was shortened with more negative values of WPI. The effects of growing season and seeding period were occasionally equally or more important than irrigation effects. These results are also discussed in terms of their practical implications for seed producing lucerne crops. [source]


    Exogenously Applied Nitric Oxide Enhances the Drought Tolerance in Fine Grain Aromatic Rice (Oryza sativa L.)

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2009
    M. Farooq
    Abstract Drought stress is a severe threat to the sustainable rice production, which causes oxidative damage and disturbs plant water relations, while exogenously applied nitric oxide (NO) may have the potential to alleviate these effects in rice plants. In this study, the role of NO to improve drought tolerance in fine grain aromatic rice (Oryza sativa L. cv. Basmati 2000) was evaluated. Sodium nitroprusside, a NO donor, was used at 50, 100 and 150 ,mol l,1 both as seed priming and foliar spray. To prime, the seeds were soaked in aerated NO solution of respective solution for 48 h and dried back to original weight. Primed and non-primed seeds were sown in plastic pots with normal irrigation in a greenhouse. At four leaf stage, plants were subjected to drought stress except the controls, which were kept at full field capacity. Drought was maintained at 50 % of field capacity by watering when needed. Two controls were maintained; both receiving no NO treatments as foliar application or seed treatment, one under drought conditions and the other under well-watered conditions. Drought stress seriously reduced the rice growth, but both methods of NO application alleviated the stress effects. Drought tolerance in rice was strongly related to the maintenance of tissue water potential and enhanced capacity of antioxidants, improved stability of cellular membranes and enhanced photosynthetic capacity, plausibly by signalling action of NO. Foliar treatments proved more effective than the seed treatments. Among NO treatment, 100 ,mol l,1 foliar spray was more effective. [source]


    Water Deficit Reduced Fertility of Young Microspores Resulting in a Decline of Viable Mature Pollen and Grain Set in Rice

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 1 2009
    G. N. Nguyen
    Abstract Pollen formation in rice (Oryza sativa L.) is highly vulnerable to environmental stresses such as heat, chilling and drought. In rice plants exposed to drought during male reproductive development, the most obvious damage often observed is a decline in the number of engorged pollen and grain set. This has been well characterized in rice under chilling and to a lesser extent under drought stress. Moreover, detailed literature on the immediate effects of drought on developing young microspores in rice is still limited. Here, we report findings from experiments on rice plants exposed to water deficit for three consecutive days during early stages of anther development. When the osmotic potential of the growing medium was equal to or less than ,0.5 MPa, as induced by polyethylene glycol, the leaf water potential was significantly lowered and grain set was reduced. A strong correlation between grain set and viable young microspores (P < 0.001, r2 = 0.8223) indicates that water deficit immediately reduced fertility of rice plants at the time of exposure. This result suggests a new underlying mechanism of water deficit-induced pollen abortion in rice. [source]


    Effect of Straw on Yield Components of Rice (Oryza sativa L.) Under Rice-Rice Cropping System

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 2 2006
    K. Surekha
    Abstract Field experiments were conducted at the Directorate of Rice Research experimental farm, ICRISAT campus, Patancheru, Hyderabad, during 1998,2000 for five consecutive seasons (three wet and two dry seasons) with five treatments [T1 , 100 % straw incorporation; T2 , 50 % straw incorporation; T3 , 100 % straw + green manure (GM) incorporation; T4 , 100 % straw burning and T5 , 100 % straw removal (control)] along with the recommended dose of fertilizers to evaluate the effect of different crop residue management (CRM) practices on yield components and yield of rice in rice,rice cropping sequence. The ammonium N measured at active tillering was higher in 100 % straw-added plots over 50 % straw addition and straw removal with maximum values in the straw + GM-incorporated plots. Among the yield components, tillers, panicles and spikelets were influenced from the second season of residue incorporation with significant increase in 100 % straw-added treatments. The increase in tiller and panicle number could be attributed to the increased NH4 -N in these treatments, which is evident from the significant correlation between tiller number and NH4 -N (r = 0.82**) and panicle number and NH4 -N (r = 0.87**). The influence of residue treatments on rice grain yield was observed from the third season onwards where incorporation of straw alone or in combination with GM and burning of straw significantly increased grain and straw yields. Grain yield showed significant positive correlation with the number of tillers (r = 0.74*,0.81**) and panicles (r = 0.74*,0.84**) in three treatments (T1, T3 andT4) where grain yields were significantly higher. The regression analysis showed that 57,66 % and 64,75 % of the variation in yield could be explained by tillers and panicles together in these three treatments during wet and dry seasons respectively. Thus, CRM practices such as addition of 100 % straw either alone or with GM and straw burning influenced the yield components (tillers, panicles and spikelets) positively and thereby increased rice grain yields. [source]


    Spring Cereals for Forage and Grain Production in a Cool Maritime Climate

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 1 2003
    A. G. Todd
    Abstract Newfoundland's climate is marginal for agricultural production. The availability of locally grown cereal grain and high-quality forage are major limitations to successful animal agriculture in this region. Here, our overall objective was to compare several spring cereal species for both annual forage and grain production in Newfoundland's cool Maritime climate. Several varieties of barley (Hordeum vulgare L.), wheat (Triticum aesitivum L.), oats (Avena sativa L.) and pea (Pisum sativum L.),cereal mixtures for forage yield and quality, as well as grain yield and maturity, were compared in field trials on the east and west coasts in both 1999 and 2000. Barley headed earliest, yielded greatest forage dry matter, had lowest forage protein and acid detergent fibre (ADF) percentages, and had neutral detergent fibre (NDF) mean values greater than those of pea,cereal mixtures, but less than those of oats and wheat. Forage harvested from pea,cereal mixtures was similar to that of barley for yield, ADF and NDF, while P and protein percentage were much greater. Barley matured 10,15 days earlier than both wheat and oats. In general terms, all three spring cereals exhibited similar grain yield potential. Oats tillered less, but compensated by producing more kernels spike,1. Days to maturity for cereal grains in western Newfoundland were roughly similar to those reported for the Maritime provinces of Canada. Yield and maturity results for both forage and grain production suggest that eastern Newfoundland is a unique agro-ecoregion in North America, and agronomic recommendations specific to other regions may not be applicable in this region. [source]


    Varietal Differences in Allelopathic Potential of Alfalfa

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 1 2002
    Tran Dang Xuan
    Alfalfa (Medicago sativa L.) plants were found to contain water-soluble substances that inhibited the germination and seedling growth of alfalfa (Chung and Miller 1990, Agron. J. 87, 762,767). Tsuzuki et al. (1999, Rep. Kyushu Branch Crop Sci. Soc. Japan 65, 39,40) discovered allelochemicals in alfalfa plants that could have adverse effects on the growth of some lowland weeds. This study was conducted to investigate varietal differences in allelopathic potential in alfalfa plants. Eight common varieties of Japanese alfalfa (Medicago sativa L.), namely Batasu, Hisawakaba, Kitawakaba, Makiwakaba, Natsuwakaba, Lucerne, Tachiwakaba and Yuba, were grown by conventional methods in the Experimental Field of the Crop Science Laboratory, Faculty of Agriculture, Miyazaki University. Aqueous extracts of both fresh and dried material of alfalfa plants of all varieties significantly inhibited both germination and growth of lettuce (Lactuca sativa L.). Leachates from germinating seeds of almost all alfalfa varieties inhibited elongation of the radicle but produced a negligible increase in germination and only slightly inhibited elongation of the hypocotyl of lettuce plants. Results demonstrated that the degree of inhibition of germination and growth of lettuce varied with the variety of alfalfa. In particular, Lucerne was identified as having the strongest allelopathic potential of the varieties studied. The results suggested that the allelopathic potential of alfalfa might be relating to a gene. Varietätsunterschiede im allelopathischen Potential von Luzerne Luzerne (Medicago sativa L.)-Pflanzen weisen wasserlösliche Substanzen auf, die die Keimung und das Sämlingswachstum von Luzerne inhibieren. Es kann angenommen werden, daß Luzernepflanzen allelopathisch wirkende Verbindungen aufweisen, die das Wachstum von Unkrautpflanzen des Tieflands beeinträchtigen. Die Untersuchung wurde durchgeführt, um das Potential allelopathischer Sortenunterschiede bei Luzerne zu bestimmen. Acht im Anbau verwendete Luzernesorten , Batasu, Hisawakaba, Kitawakaba, Makiwakaba, Natsuwakaba, Lucerne, Tachiwakaba und Yuba , wurden nach konventionellen Verfahren auf dem Versuchsfeld des Pflanzenbauinstitutes der Fakultät der Miyazaki-Universität angebaut. Wässerige Extrakte von frischen und trockenen Luzernepflanzen hemmten bei allen Sorten signifikant die Keimung und das Wachstum von Salat (Lactuca sativa L.). Auszüge keimender Samen der meisten Luzernesorten inhibierten das Längenwachstum der Wurzel, hatten aber kaum Einfluß auf eine Förderung der Keimung und zeigten eine geringe Inhibierung des Längenwachstum des Hypokotyls von Salat. Die Ergebnisse zeigen, daß der Grad der Inhibierung der Keimung des Wachstums von Salat abhängig von den geprüften Luzernesorten ist. Lucerne hat das stärkste allelopathische Potential der Sorten. Die Ergebnisse lassen vermuten, daß das allelopathische Potential genetisch bedingt ist. [source]


    Inter-relationships Amongst Grain Characteristics, Grain-Filling Parameters and Rice (Oryza sativa L.) Milling Quality

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2001
    S. Jongkaewwattana
    Resistance to breakage is a desirable trait of the rice kernel. Many factors, such as the genetics of the cultivar, the plant growth environment and the conditions of the milling process, will affect kernel breakage. Although many papers have discussed the factors that may affect and improve rice milling quality, few have related the grain-filling process to head rice, the unbroken polished kernels obtained after milling. The objectives of this paper were: (i) to characterize the interrelationships amongst grain filling and grain structural characteristics; (ii) to determine whether the grain-filling process and grain characteristics affect head rice, and (iii) to suggest a pathway through which grain characteristics can influence head rice recovery. An analysis of the interrelationships amongst all grain characteristics suggested that variables of grain structure (size, volume and per cent hull) have a decisive influence on the grain-filling process (rate and duration of grain filling). The grain-filling process will affect final grain traits such as weight and density, which in turn will have a direct impact on head rice. In addition, non-uniformity, whether expressed in terms of variable grain size and shape or grain filling and maturity, has a detrimental effect on rice milling quality. The implication of these findings is that rice breeders need to pay more attention to selecting plant types that have a high degree of uniformity of grain characteristics on the panicle, and to those traits (such as greater grain size, weight and density) that have a positive impact on yield and milling quality. Beziehungen zwischen Korneigenschaften, Kornfüllungsparametern und Reis (Oryza sativa L.)-Vermahlungsqualität Bruchresistenz von Reiskörnern ist eine wünschenswerte Eigenschaft. Viele Faktoren, wie Genetik, Umwelt des Pfanzenwachstums und Voraussetzungen der Vermahlung, beeinflussen die Bruchresistenz der Körner. Obwohl viele Veröffentlichungen die Faktoren diskutieren, die die Mahlqualität beinträchtigen oder verbessern, beziehen sich nur wenige auf den Kornfüllungsvorgang zu ungebrochenen polierten Körner nach dem Mahlvorgang. Ziel der Untersuchungen war es: zu charakterisieren die Beziehungen zwischen Kornfüllung und Kornstruktur; zu bestimmen, ob der Kornfüllungsprozess und Korneigenschaften die Bruchresistenz von Reis beeinflussen können; und vorzuschlagen eine Behandlung durch die Korneigenschaften die Wiedergewinnung von Bruchreis beieinflußt werden kann. Eine Analyse der Beziehungen zwischen den Korneigenschaften weist darauf hin, dass Variable der Kornstruktur (Größe, Umfang und Antiel der Schale) einen deutlichen Einfluß auf den Kornfüllungsprozess haben (Rate und Dauer der Kornfüllung). Der Kornfüllungsprozess beeinflußt Korngewicht und Korndichte, die eine unmittelbare Auswirkung auf ungebrochene Körner nach dem Mahlvorgang haben. Auch Uneinheitlichkeit in Korngröße und Kornform oder Kornfüllung und Kornreife haben einen ungünstigen Einfluß auf die Vermahlungsqualität von Reis. Hieraus ergibt sich der Hinweis, daß Reiszüchter in der Selketion auf einen hohen Grad von Einheitlichkeit der Körner der Rispe und deren Eigenschaften (hohe Korngröße, Korngewicht und Korndichte), die einen Einfluß auf Ertrag und Mahlqualität haben, achten sollten. [source]


    Effect of Secondary Salinization on Photosynthesis in Fodder Oat (Avena sativa L.) Genotypes

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 1 2000
    A. Chatrath
    The effect of secondary salinization on photosynthesis was studied in fodder oat genotypes Kent, JHO-829, JHO-881, UPO-94 and OS-6 at the flower initiation stage. With an increase in the electrical conductivity (EC) of irrigation water, the net photosynthesis rate (PN) and the transpiration rate (E) of all the genotypes decreased. The intercellular CO2 concentration (Ci) increased in all genotypes at 10 dS m,1. Stomatal resistance (Rs) had a strong negative correlation with PN and E. The increase in Ci together with the increase in the Rs shows that at higher EC non-stomatal factors also start contributing to the limitation of photosynthesis. This study suggests that secondary salinization effects are strongly under stomatal control at lower saline water irrigation levels, but at higher levels non-stomatal factors may come into play. [source]


    Olfactory response of Trigonotylus caelestialium (Het.: Miridae) to rice plant and gramineous weeds

    JOURNAL OF APPLIED ENTOMOLOGY, Issue 8 2007
    T. Niiyama
    Abstract:, The olfactory response of Trigonotylus caelestialium, to rice, Oryza sativa L., and two species of gramineous weeds, Poa annua and Digitaria ciliaris, was investigated with an olfactometer to clarify the role of host-plant odours as olfactory cues in their host-finding behaviour. Third-instar nymphs and adult males were significantly attracted to whole plants (above ground parts) of P. annua. However, adult females were not significantly attracted to whole plants of P. annua. Attractancy of rice to T. caelestialium differed with the growth stage and part of the plant. Adult females were significantly attracted to stems and leaves in the panicle-formation stage, and panicles in the flowering stage. They were not attracted to stems and leaves in the fourth-leaf stage and flowering stage, or to panicles in the milk-and full-ripe stages. Although adult males were significantly attracted to stems and leaves in the panicle-formation stage, they were not attracted to the other rice structures tested. Both females and males were significantly attracted to stems and leaves, as well as panicles of D. ciliaris in the flowering stage. The findings suggest that T. caelestialium use host-plant volatiles as olfactory cues to find their host plants and their invasion to paddy fields were caused by olfactory responses to rice plant. [source]


    Influence of host plant odours on invasion of the rice leaf bug Trigonotylus caelestialium into paddy fields

    AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 1 2010
    Tatsuya Fujii
    1The host-odour preferences of the rice leaf bug Trigonotylus caelestialium between the rice plant Oryza sativa L. and four species of graminaceous weeds, Poa annua, Alopecurus aequalis, Digitaria ciliaris and Eleusine indica, were investigated with an olfactometer aiming to clarify the influence of these odours on invasion of the bug to paddy fields at the flowering stage of rice. 2Both female and male adults significantly preferred the graminaceous weed A. aequalis in the flowering stage to rice in the fifth-leaf stage. The bugs also significantly preferred flowering P. annua and A. aequalis to rice in the panicle-formation stage. However, the bugs showed no preferences between rice in the flowering and grain-filling stages and the flowering graminaceous weeds P. annua, D. ciliaris and E. indica. 3The preference of the rice leaf bug for the flowering graminaceous weeds before rice flowering coincides with the fact that these bugs mainly live on these weeds before rice flowering. It is considered that the bug's similar preference for flowering rice panicles as the flowering graminaceous weeds causes the intense invasion of the bug into paddy fields at this rice developmental stage. [source]


    Three-Dimensional Lipid Distribution of a Brown Rice Kernel

    JOURNAL OF FOOD SCIENCE, Issue 7 2002
    Y. Ogawa
    ABSTRACT: Lipid distribution was successfully observed in a brown rice kernel (Oryza sativa L.) 3-dimension-ally (3D) by means of a virtual 3D visualizing model. Sections of an untreated rice kernel were collected on an adhesive tape with preservation of its shape. The actual distribution of lipid was visualized by staining. A virtual 3D visualizing model of the lipid distribution was produced from the stained sequential sections of the rice kernel. Lipid is not only located at the outer layer of the rice kernel but also in lower tissues beneath the seed coat and around the embryo. Lipid distribution at dorsal and ventral sides could also be visualized. [source]


    Effects of Elevated CO2 on Growth, Carbon Assimilation, Photosynthate Accumulation and Related Enzymes in Rice Leaves during Sink-Source Transition

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 6 2008
    Jun-Ying Li
    Abstract To study the effects of growing rice (Oryza sativa L.) leaves under the treatment of the short-term elevated CO2 during the period of sink-source transition, several physiological processes such as dynamic changes in photosynthesis, photosynthate accumulation, enzyme activities (sucrose phosphate synthase (SPS), and sucrose synthase (SS)), and their specific gene (sps1 and RSus1) expressions in both mature and developing leaf were measured. Rice seedlings with fully expanded sixth leaf (marked as the source leaf, L6) were kept in elevated (700 ,mol/mol) and ambient (350 mol/L) CO2 until the 7th leaf (marked as the sink leaf, L7) fully expanded. The results demonstrated that elevated CO2 significantly increased the rate of leaf elongation and biomass accumulation of L7 during the treatment without affecting the growth of L6. However, in both developing and mature leaves, net photosynthetic assimilation rate (A), all kinds of photosynthate contents such as starch, sucrose and hexose, activities of SPS and SS and transcript levels of sps1 and RSus1 were significantly increased under elevated CO2 condition. Results suggested that the elevated CO2 had facilitated photosynthate assimilation, and increased photosynthate supplies from the source leaf to the sink leaf, which accelerated the growth and sink-source transition in new developing sink leaves. The mechanisms of SPS regulation by the elevated CO2 was also discussed. [source]


    Cell-wall Invertases from Rice are Differentially Expressed in Caryopsis during the Grain Filling Stage

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 4 2008
    Yong-Qin Wang
    Abstract Cell-wall invertase plays an important role in sucrose partitioning between source and sink organs in higher plants. To investigate the role of cell-wall invertases for seed development in rice (Oryza sativa L.), cDNAs of three putative cell-wall invertase genes OsCIN1, OsCIN2 and OsCIN3 were isolated. Semi-quantitative reverse transcription-polymerase chain reaction analysis revealed different expression patterns of the three genes in various rice tissues/organs. In developing caryopses, they exhibited similar temporal expression patterns, expressed highly at the early and middle grain filling stages and gradually declined to low levels afterward. However, the spatial expression patterns of them were very different, with OsCIN1 primarily expressed in the caryopsis coat, OsCIN2 in embryo and endosperm, and OsCIN3 in embryo. Further RNA in situ hybridization analysis revealed that a strong signal of OsCIN2 mRNA was detected in the vascular parenchyma surrounding the xylem of the chalazal vein and the aleurone layer, whereas OsCIN3 transcript was strongly detected in the vascular parenchyma surrounding the phloem of the chalazal vein, cross-cells, the aleurone layer and the nucellar tissue. These data indicate that the three cell-wall invertase genes play complementary/synergetic roles in assimilate unloading during the grain filling stage. In addition, the cell type-specific expression patterns of OsCIN3 in source leaf blades and anthers were also investigated, and its corresponding physiological roles were discussed. [source]


    The 6-phosphogluconate Dehydrogenase Genes Are Responsive to Abiotic Stresses in Rice

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 5 2007
    Fu-Yun Hou
    Abstract Glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH, EC 1.1.1.44) are both key enzymes of the pentose phosphate pathway (PPP). The OsG6PDH1 and Os6PGDH1 genes encoding cytosolic G6PDH and cytosolic 6PGDH were isolated from rice (Oryza sativa L.). We have shown that Os6PGDH1 gene was up-regulated by salt stress. Here we reported the isolation and characterization of Os6PGDH2 from rice, which encode the plastidic counterpart of 6PGDH. Genomic organization analysis indicated that OsG6PDH1 and OsG6PDH2 genes contain multiple introns, whereas two Os6PGDH1 and Os6PGDH2 genes have no introns in their translated regions. In a step towards understanding the functions of the pentose phosphate pathway in plants in response to various abiotic stresses, the expressions of four genes in the rice seedlings treated by drought, cold, high salinity and abscisic acid (ABA) were investigated. The results show that OsG6PDH1 and OsG6PDH2 are not markedly regulated by the abiotic stresses detected. However, the transcript levels of both Os6PGDH1 and Os6PGDH2 are up-regulated in rice seedlings under drought, cold, high salinity and ABA treatments. Meanwhile, the enzyme activities of G6PDH and 6PGDH in the rice seedlings treated by various abiotic stresses were investigated. Like the mRNA expression patterns, G6PDH activity remains constant but the 6PGDH increases steadily during the treatments. Taken together, we suggest that the pentose phosphate pathway may play an important role in rice responses to abiotic stresses and the second key enzyme of PPP, 6PGDH, may function as a regulator controlling the efficiency of the pathway under abiotic stresses. (Handling editor: Kang Chong) [source]


    Rice Mitochondrial Genes Are Transcribed by Multiple Promoters That Are Highly Diverged

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 12 2006
    Qun-Yu Zhang
    Abstract Plant mitochondrial genes are often transcribed into complex sets of mRNA. To characterize the transcription initiation and promoter structure, the transcript termini of four mitochondrial genes, atp1, atp6, cob, rps7, in rice (Oryza sativa L.), were determined by using a modified circularized RNA reverse transcription-polymerase chain reaction method. The results revealed that three genes (atp1, atp6, rps7) were transcribed from multiple initiation sites, indicating the presence of multiple promoters. Two transcription termination sites were detected in three genes (atp6, cob, rps7), respectively. Analysis on the promoter architecture showed that the YRTA (Y=T or C, R=A or G) motifs that are widely present in the mitochondrial promoters of other monocotand dicot plant species were detected only in two of the 12 analyzed promoters. Our data suggest that the promoter sequences in the rice mitochondrial genome are highly diverged in comparison to those in other plants, and the YRTA motif is not an essential element for the promoter activity. (Managing editor: Li-Hui Zhao) [source]


    Genotyping the Heading Date of Male-Sterile Rice Line II-32A

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 4 2006
    Jun-Feng Xu
    Abstract II-32A, an elite male-sterile line of rice (Oryza sativa L.), has been widely used for the production of hybrid rice seed in China. Heading date in most combinations using II-32A shows transgressive inheritance or similarity to the latter parent, but the genotype of II-32A with respect to major genes for heading time is unknown. This limits the further exploitation of this sterile line in breeding and hybrid seed production. Using a number of major gene heading date isogenic lines and heading date QTL near-isogenic lines, we genetically analyzed II-32B under both long- and short-day conditions. We show that II-32B carries two photoperiod-sensitive genes, E1 and E3, a recessive late-heading gene, ef-1, and a photoperiod-sensitive allele, Se-1u. In addition we identified in II-32B a recessive inhibitor for E1 or Se-1n and other modified photoperiod-sensitive genes. The heading-date constitution of II-32A was determined to be E1e2E3Se-1uef-1i-Se-1. (Managing editor: Li-Hui Zhao) [source]


    Genetic Analysis and Mapping of the Dominant Dwarfing Gene D-53 in Rice

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 4 2006
    Li-Rong Wei
    Abstract The dwarfing gene D-53 is one of a few dominant genes for dwarfing in rice (Oryza sativa L.). In the present study, our genetic analysis confirmed that mutant characteristics including dwarfing, profuse tillering, thin stems and small panicles are all controlled by the dominant D-53 gene. We measured the length of each internode of KL908, a D-53- carrying line, and classified the dwarfism of KL908 into the dn-type. In addition, we measured elongation of the second sheath and ,-amylase activity in the endosperm, and we characterized KL908 as a dwarf mutant that was neither gibberellic acid-deficient nor gibberellic acid-insensitive. Using a large F2 population obtained by crossing KL908 with a wild-type variety, NJ6, the D-53 gene was mapped to the terminal region of the short arm of chromosome 11, with one simple sequence repeat marker, Ds3, co-segregating, and the other, K81114, located 0.6 cM away. (Managing editor: Li-Hui Zhao) [source]