Home About us Contact | |||
Sampling Data (sampling + data)
Selected AbstractsA Model-Based Approach for Making Ecological Inference from Distance Sampling DataBIOMETRICS, Issue 1 2010Devin S. Johnson Summary We consider a fully model-based approach for the analysis of distance sampling data. Distance sampling has been widely used to estimate abundance (or density) of animals or plants in a spatially explicit study area. There is, however, no readily available method of making statistical inference on the relationships between abundance and environmental covariates. Spatial Poisson process likelihoods can be used to simultaneously estimate detection and intensity parameters by modeling distance sampling data as a thinned spatial point process. A model-based spatial approach to distance sampling data has three main benefits: it allows complex and opportunistic transect designs to be employed, it allows estimation of abundance in small subregions, and it provides a framework to assess the effects of habitat or experimental manipulation on density. We demonstrate the model-based methodology with a small simulation study and analysis of the Dubbo weed data set. In addition, a simple ad hoc method for handling overdispersion is also proposed. The simulation study showed that the model-based approach compared favorably to conventional distance sampling methods for abundance estimation. In addition, the overdispersion correction performed adequately when the number of transects was high. Analysis of the Dubbo data set indicated a transect effect on abundance via Akaike's information criterion model selection. Further goodness-of-fit analysis, however, indicated some potential confounding of intensity with the detection function. [source] Bayesian Estimation of Species Richness from Quadrat Sampling Data in the Presence of Prior InformationBIOMETRICS, Issue 3 2006Jérôme A. Dupuis Summary We consider the problem of estimating the number of species of an animal community. It is assumed that it is possible to draw up a list of species liable to be present in this community. Data are collected from quadrat sampling. Models considered in this article separate the assumptions related to the experimental protocol and those related to the spatial distribution of species in the quadrats. Our parameterization enables us to incorporate prior information on the presence, detectability, and spatial density of species. Moreover, we elaborate procedures to build the prior distributions on these parameters from information furnished by external data. A simulation study is carried out to examine the influence of different priors on the performances of our estimator. We illustrate our approach by estimating the number of nesting bird species in a forest. [source] IS A NEW AND GENERAL THEORY OF MOLECULAR SYSTEMATICS EMERGING?EVOLUTION, Issue 1 2009Scott V. Edwards The advent and maturation of algorithms for estimating species trees,phylogenetic trees that allow gene tree heterogeneity and whose tips represent lineages, populations and species, as opposed to genes,represent an exciting confluence of phylogenetics, phylogeography, and population genetics, and ushers in a new generation of concepts and challenges for the molecular systematist. In this essay I argue that to better deal with the large multilocus datasets brought on by phylogenomics, and to better align the fields of phylogeography and phylogenetics, we should embrace the primacy of species trees, not only as a new and useful practical tool for systematics, but also as a long-standing conceptual goal of systematics that, largely due to the lack of appropriate computational tools, has been eclipsed in the past few decades. I suggest that phylogenies as gene trees are a "local optimum" for systematics, and review recent advances that will bring us to the broader optimum inherent in species trees. In addition to adopting new methods of phylogenetic analysis (and ideally reserving the term "phylogeny" for species trees rather than gene trees), the new paradigm suggests shifts in a number of practices, such as sampling data to maximize not only the number of accumulated sites but also the number of independently segregating genes; routinely using coalescent or other models in computer simulations to allow gene tree heterogeneity; and understanding better the role of concatenation in influencing topologies and confidence in phylogenies. By building on the foundation laid by concepts of gene trees and coalescent theory, and by taking cues from recent trends in multilocus phylogeography, molecular systematics stands to be enriched. Many of the challenges and lessons learned for estimating gene trees will carry over to the challenge of estimating species trees, although adopting the species tree paradigm will clarify many issues (such as the nature of polytomies and the star tree paradox), raise conceptually new challenges, or provide new answers to old questions. [source] A centroid-based sampling strategy for kriging global modeling and optimizationAICHE JOURNAL, Issue 1 2010Eddie Davis Abstract A new sampling strategy is presented for kriging-based global modeling. The strategy is used within a kriging/response surface (RSM) algorithm for solving NLP containing black-box models. Black-box models describe systems lacking the closed-form equations necessary for conventional gradient-based optimization. System optima can be alternatively found by building iteratively updated kriging models, and then refining local solutions using RSM. The application of the new sampling strategy results in accurate global model generation at lower sampling expense relative to a strategy using randomized and heuristic-based sampling for initial and subsequent model construction, respectively. The new strategy relies on construction of an initial kriging model built using sampling data obtained at the feasible region's convex polytope vertices and centroid. Updated models are constructed using additional sampling information obtained at Delaunay triangulation centroids. The new sampling algorithm is applied within the kriging-RSM framework to several numerical examples and case studies to demonstrate proof of concept. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] Estimating catch at age from market sampling data by using a Bayesian hierarchical modelJOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES C (APPLIED STATISTICS), Issue 1 2004David Hirst Summary., The paper develops a Bayesian hierarchical model for estimating the catch at age of cod landed in Norway. The model includes covariate effects such as season and gear, and can also account for the within-boat correlation. The hierarchical structure allows us to account properly for the uncertainty in the estimates. [source] Effect of protective filters on fire fighter respiratory health: field validation during prescribed burnsAMERICAN JOURNAL OF INDUSTRIAL MEDICINE, Issue 1 2009Annemarie J.B.M. De Vos MPH, ICCert Abstract Background Bushfire smoke contains a range of air toxics. To prevent inhalation of these toxics, fire fighters use respiratory equipment. Yet, little is known about the effectiveness of the equipment on the fire ground. Experimental trials in a smoke chamber demonstrated that, the particulate/organic vapor/formaldehyde (POVF) filter performed best under simulated conditions. This article reports on the field validation trials during prescribed burns in Western Australia. Methods Sixty-seven career fire fighters from the Fire and Emergency Services Authority of Western Australia were allocated one of the three types of filters. Spirometry, oximetry, self-reported symptom, and personal air sampling data were collected before, during and after exposure to bushfire smoke from prescribed burns. Results Declines in FEV1 and SaO2 were demonstrated after 60 and 120 min exposure. A significant higher number of participants in the P filter group reported increases in respiratory symptoms after the exposure. Air sampling inside the respirators demonstrated formaldehyde levels significantly higher in the P filter group compared to the POV and the POVF filter group. Conclusions The field validation trials during prescribed burns supported the findings from the controlled exposure trials in the smoke chamber. Testing the effectiveness of three types of different filters under bushfire smoke conditions in the field for up to 2 hr demonstrated that the P filter is ineffective in filtering out respiratory irritants. The performance of the POV and the POVF filter appears to be equally effective after 2 hr bushfire smoke exposure in the field. Am. J. Ind. Med. 52:76,87, 2009. © 2008 Wiley-Liss, Inc. [source] Hypersensitivity pneumonitis due to metal working fluids: Sporadic or under reported?AMERICAN JOURNAL OF INDUSTRIAL MEDICINE, Issue 6 2006Amit Gupta MD Abstract Background Occupational exposure to metal working fluids (MWF) is common with over 1.2 million workers in the United States involved in machine finishing, machine tooling, and other metalworking operations. MWF is a known cause of hypersensitivity pneumonitis (HP). Recent reports of outbreaks of hypersensitivity HP secondary to exposure to MWF are reported. Design Cases were identified through the Occupational Disease surveillance system in the State of Michigan and from referrals for evaluation to the Division of Occupational and Environmental Medicine at Michigan State University (MSU). Each patient underwent a clinical examination including an occupational history, lung function studies, radiographic imaging, and in some cases lung biopsies. Following the diagnosis of definite HP, an industrial hygiene investigation was carried out, which included a plant walk-through, and review of the "Injury and Illness" log. Air monitoring and microbial sampling results were reviewed. Results As part of Michigan's mandatory surveillance system for occupational illnesses, seven cases of suspected HP were identified in 2003,2004 from three facilities manufacturing automobile parts in Michigan. Each plant used semi-synthetic MWFs, and conducted a MWF management program including biocide additions. Two facilities had recently changed the MWF before the cases arose. Growth of mycobacteria was found in these two MWFs. Breathing zone samples for particulates of two employees in plant A (two cases) ranged from 0.48 to 0.56 mg/m3. In plant B (four cases), two employees' sampling results ranged from 0.10 to 0.14 mg/m3. No air sampling data were available from plant C. Conclusion Hypersensitivity pneumonitis due to exposure to MWFs is under-recognized by health care providers, and current surveillance systems are inadequate to provide a true estimate of its occurrence. HP arose from environments with exposures well below the Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) for MWF, and in one case from exposures well below the National Institute of Occupational Safety and Health (NIOSH) recommended exposure limit (REL). The sporadic nature of reports of HP in relationship to MWF probably represents a combination of workplace changes that cause the disease and inadequate recognition and reporting of the disease when it does occur. Physician awareness of HP secondary to MWF and an effective medical surveillance program are necessary to better understanding the epidemiology and prevention of this disease. Am. J. Ind. Med. 2006. © 2006 Wiley-Liss, Inc. [source] Children and Chores: A Mixed-Methods Study of Children's Household Work in Los Angeles FamiliesANTHROPOLOGY OF WORK REVIEW, Issue 3 2009Wendy Klein Abstract This ethnographic study investigates children's contributions to household work through the analysis of interview data and scan sampling data collected among 30 middle-class dual-earner families in Los Angeles, California. We discuss convergences and divergences between data collected with two independent methodologies: scan sampling and interviewing. Scan sampling data provide an overview of the frequency of children's participation in household work as well as the types of tasks they engaged in during data collection. Children's interview responses reflect their perceptions of their responsibilities, how they view family expectations regarding their participation in household work, and whether allowance is an effective motivator. Comparative analysis reveals that most children in our study spend surprisingly little time helping around the house and engage in fewer tasks than what they report in interviews. Within the context of children's minimal participation in household work, we find that allowance is not an effective motivator, but that children in families with access to paid domestic help tend to be less helpful than children in families without. We suggest that while most children are aware that their working parents need help, in some families, inconsistent and unclear expectations from parents negatively affect children's participation in household work. [source] Rate of succession in restored wetlands and the role of site contextAPPLIED VEGETATION SCIENCE, Issue 3 2010Jeffrey W. Matthews Abstract Question: Are changes in plant species composition, functional group composition and rates of species turnover consistent among early successional wetlands, and what is the role of landscape context in determining the rate of succession? Location: Twenty-four restored wetlands in Illinois, USA. Methods: We use 4 years of vegetation sampling data from each site to describe successional trends and rates of species turnover in wetlands. We quantify: (1) the rate at which composition changes from early-successional to late-successional species and functional groups, as indicated by site movement in ordination space over time, and (2) the rate of change in the colonization and local extinction of individual species. We correlate the pace of succession to site area, isolation and surrounding land cover. Results: Some commonalities in successional trends were evident among sites. Annual species were replaced by clonal perennials, and colonization rates declined over time. However, differences among sites outweighed site age in determining species composition, and the pace of succession was influenced by a site's landscape setting. Rates of species turnover were higher in smaller wetlands. In addition, wetlands in agricultural landscapes underwent succession more rapidly, as indicated by a rapid increase in dominance by late-successional plants. Conclusions: Although the outcome of plant community succession in restored wetlands was somewhat predictable, species composition and the pace of succession varied among sites. The ability of restoration practitioners to accelerate succession through active manipulation may be contingent upon landscape context. [source] Validation of Microdialysis Sampling for Oral Availability Studies by Means of a New Ganciclovir ProdrugBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 6 2002Karin Lindén Three different techniques were used in the study; microdialysis, blood and urinesampling. The oral uptake (11±2%) and the urinary recovery (106±5%) were determined. Animals given ganciclovir subcutaneously were subject either to microdialysis and blood sampling or to microdialysis alone. There was no significant difference between microdialysis and blood sampling in terms of blood concentration data, CL, Vd, half-life or AUC by means of Student's t-test. The oral bioavailability of the prodrug was 40±7% estimated from microdialysis sampling data and 48±4% estimated from urine sampling data. It is concluded that microdialysis is a valid method to use in pharmacokinetic studies of oral availability as well as for basic pharmacokinetic parameter estimation. [source] A Model-Based Approach for Making Ecological Inference from Distance Sampling DataBIOMETRICS, Issue 1 2010Devin S. Johnson Summary We consider a fully model-based approach for the analysis of distance sampling data. Distance sampling has been widely used to estimate abundance (or density) of animals or plants in a spatially explicit study area. There is, however, no readily available method of making statistical inference on the relationships between abundance and environmental covariates. Spatial Poisson process likelihoods can be used to simultaneously estimate detection and intensity parameters by modeling distance sampling data as a thinned spatial point process. A model-based spatial approach to distance sampling data has three main benefits: it allows complex and opportunistic transect designs to be employed, it allows estimation of abundance in small subregions, and it provides a framework to assess the effects of habitat or experimental manipulation on density. We demonstrate the model-based methodology with a small simulation study and analysis of the Dubbo weed data set. In addition, a simple ad hoc method for handling overdispersion is also proposed. The simulation study showed that the model-based approach compared favorably to conventional distance sampling methods for abundance estimation. In addition, the overdispersion correction performed adequately when the number of transects was high. Analysis of the Dubbo data set indicated a transect effect on abundance via Akaike's information criterion model selection. Further goodness-of-fit analysis, however, indicated some potential confounding of intensity with the detection function. [source] |