Sample Variance (sample + variance)

Distribution by Scientific Domains


Selected Abstracts


Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studies

ECOLOGY OF FRESHWATER FISH, Issue 3 2004
M. A. Sotiropoulos
Abstract,,, We examined whether solvent-based lipid extractions, commonly used for stable isotope analysis (SIA) of biota, alters ,15N or ,13C values of fish muscle tissue or whole juvenile fish. Lipid extraction from muscle tissue led to only small (<1,) isotope shifts in ,13C and ,15N values. By contrast, ecologically significant shifts (+3.4, for ,13C and +2.8, for ,15N) were observed for whole juvenile fish. Sample variance was not affected by lipid extraction. For tissue-specific SIA, two sample aliquots may be required: a lipid-extracted aliquot for stable carbon isotope analysis when differing lipid content among tissues is a concern, and a nonextracted aliquot for ,15N determination. Whole organism SIA is not recommended because of the mix of tissues having different turnover times; for very small fish, we recommend that fish be eviscerated, decapitated, and skinned to minimise differences with samples of muscle tissue. Resumen 1. Cada vez con mayor frecuencia, los ecólogos de peces utilizan análisis de isótopos estables. Por ello, se hace cada vez más importante comprender las fuentes de variación, - debido a diferencias inherentes entre muestreos biológicos o como resultado de técnicas de procesamiento de muestreo - tanto como identificar estrategias para tratar tales fuentes. Examinamos si la extracción de lípidos basada en disolventes, comúnmente utilizada en análisis de isótopos de carbono estable, altera negativamente los valores de ,15N y ,13C de tejido muscular de tres peces de tamaño pequeño y de peces juveniles completos. 2. La extracción de lípidos de músculo de pez llevó a pequeños cambios isotópicos de + +0.4 a +1.0, y de +0.3 a +0.5, para ,13C y ,15N, respectivamente. Por el contrario, la extracción de lípidos de peces juveniles completos varió marcadamente en +3.4, para ,13C y +2.8, para ,15N - ambos cambios ecológicamente importantes. La varianza de los valores de muestreos de ,13C y de ,15N tanto para tejido muscular como para los peces completos no difirieron entre los muestreos de lípidos extraídos y muestreos sin tratamiento. 3. Nuestros resultados recomiendan el análisis de isótopos estables de tejidos específicos. Cuando ello no es posible o deseable, dos alícuotas de muestreo pueden ser requeridas: una alícuota de lípidos extraídos para el análisis de isótopos de carbono estable cuando la varianza de ,13C, debida a diferencias en el contenido de lípidos de diferentes tejidos, y una alícuota de no-extracción para determinaciones de ,15N. 4. Dada la mezcla de tejidos, el análisis de isótopos de un organismo completo no es recomendable , en el caso de peces muy pequeños, recomendamos que los peces sean eviscerados, decapitados, y despellejados para minimizar las diferencias de muestreos de tejido muscular. [source]


Spatial variability of total soil carbon and nitrogen stocks for some reclaimed minesoils of southeastern Ohio,

LAND DEGRADATION AND DEVELOPMENT, Issue 3 2008
G. Nyamadzawo
Abstract Reclamation of drastically disturbed minesoils and subsequent planting of trees and/or grasses can result in a rapid build-up of carbon (C) in the soil. However, the amount of C sequestered in reclaimed minesoils may vary with the amount of time since reclamation. In this study, we assessed total carbon (TC) and total nitrogen (TN) concentrations for reclaimed minesoils located in northeastern Ohio and characterized by distinct reclamation age chronosequences. Reclaimed minesoils studied were R78G, reclaimed in 1978 and immediately seeded to grass; R82GT, reclaimed in 1982 and immediately seeded to grass and trees were planted 5 years later; and R87G, reclaimed in 1987 and immediately seeded to grass. An unmined site, UMG, was also included as a reference. Our objectives were to evaluate the variability with respect to mean and the spatial variability of pH, bulk density (,b), TC and TN concentrations, and stocks in each reclaimed minesoil. Thirty soil samples were collected at each of the 0,15, 15,30, and 30,50,cm depth. The coefficient of variation (CV) for ,b was least, <15 per cent at each site and depth. For TN concentration and stock, CV was moderate, 15,35 per cent, in each field except the UMG where it was high, >35 per cent at 0,15, and 15,30,cm depths. For TC concentration and stocks, CV was high, >35 per cent, across all minesoils and generally increased with depth. The C/N ratio followed the same tend as TC and TN stocks and ranged from 40 per cent to 123 per cent across minesoils. Geostatistical analysis also showed an increase in sample variance with increasing amount of time since reclamation for most soil properties under investigation. Sample variance for TC concentration and stocks also increased with depth in reclaimed minesoils. However, no definite relationship emerged between amount of time since reclamation and the spatial dependence of TC and TN concentrations and stocks. Overall this study showed that reclamation of drastically disturbed minesoils increased the soil C concentration and stocks and reclamation by initially seeding to grasses followed by planting trees was the best management option for speedy accretion of soil C and soil quality enhancement. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Extinction risk under coloured environmental noise

ECOGRAPHY, Issue 2 2000
Mikko Heino
Positively autocorrelated red environmental noise is characterized by a strong dependence of expected sample variance on sample length. This dependence has to be taken into account when assessing extinction risk under red and white uncorrelated environmental noise. To facilitate a comparison between red and white noise, their expected variances can be scaled to be equal, but only at a chosen time scale. We show with a simple one-dimensional population dynamics model that the different but equally reasonable choices of the time scale yield qualitatively different results on the dependence of extinction risk on the colour of environmental noise: extinction risk might increase as well as decrease when the temporal correlation of noise increases. [source]


Spatial variability of total soil carbon and nitrogen stocks for some reclaimed minesoils of southeastern Ohio,

LAND DEGRADATION AND DEVELOPMENT, Issue 3 2008
G. Nyamadzawo
Abstract Reclamation of drastically disturbed minesoils and subsequent planting of trees and/or grasses can result in a rapid build-up of carbon (C) in the soil. However, the amount of C sequestered in reclaimed minesoils may vary with the amount of time since reclamation. In this study, we assessed total carbon (TC) and total nitrogen (TN) concentrations for reclaimed minesoils located in northeastern Ohio and characterized by distinct reclamation age chronosequences. Reclaimed minesoils studied were R78G, reclaimed in 1978 and immediately seeded to grass; R82GT, reclaimed in 1982 and immediately seeded to grass and trees were planted 5 years later; and R87G, reclaimed in 1987 and immediately seeded to grass. An unmined site, UMG, was also included as a reference. Our objectives were to evaluate the variability with respect to mean and the spatial variability of pH, bulk density (,b), TC and TN concentrations, and stocks in each reclaimed minesoil. Thirty soil samples were collected at each of the 0,15, 15,30, and 30,50,cm depth. The coefficient of variation (CV) for ,b was least, <15 per cent at each site and depth. For TN concentration and stock, CV was moderate, 15,35 per cent, in each field except the UMG where it was high, >35 per cent at 0,15, and 15,30,cm depths. For TC concentration and stocks, CV was high, >35 per cent, across all minesoils and generally increased with depth. The C/N ratio followed the same tend as TC and TN stocks and ranged from 40 per cent to 123 per cent across minesoils. Geostatistical analysis also showed an increase in sample variance with increasing amount of time since reclamation for most soil properties under investigation. Sample variance for TC concentration and stocks also increased with depth in reclaimed minesoils. However, no definite relationship emerged between amount of time since reclamation and the spatial dependence of TC and TN concentrations and stocks. Overall this study showed that reclamation of drastically disturbed minesoils increased the soil C concentration and stocks and reclamation by initially seeding to grasses followed by planting trees was the best management option for speedy accretion of soil C and soil quality enhancement. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Evolution of structure in the softening/melting regime of miscible polymer mixing

POLYMER ENGINEERING & SCIENCE, Issue 6 2001
Heidi E. Burch
Structure development in the softening/melting processing regime is investigated using the model miscible blend poly(styrene-co-acrylonitrile) (SAN)/poly(methyl methacrylate) (PMMA). Feed materials of four different particle sizes are compounded to study their effects upon structure development. Fourier-transform infrared spectroscopy is used to help determine the normalized sample variance, a quantitative measure of mixing. The normalized sample variance is determined both as a function of sample size and as a function of feed particle size in an effort to assess the characteristic size scale(s) present in the blend at short mixing times. Results of these experiments indicate that the distribution of size scales in the softening regime is at least bimodal. Optical examination of pigmented mixtures reveals that this multimodality is due to the operation of the Scott/Macosko sheeting mechanism of morphology development, which was previously shown to be active in immiscible blends. This is contrary to the currently accepted laminar mixing model, which postulates the formation of a striated mixture while ignoring the softening/melting regime. [source]


Robust estimation of the optimal hedge ratio

THE JOURNAL OF FUTURES MARKETS, Issue 8 2003
Richard D. F. Harris
When using derivative instruments such as futures to hedge a portfolio of risky assets, the primary objective is to estimate the optimal hedge ratio (OHR). When agents have mean-variance utility and the futures price follows a martingale, the OHR is equivalent to the minimum variance hedge ratio,which can be estimated by regressing the spot market return on the futures market return using ordinary least squares. To accommodate time-varying volatility in asset returns, estimators based on rolling windows, GARCH, or EWMA models are commonly employed. However, all of these approaches are based on the sample variance and covariance estimators of returns, which, while consistent irrespective of the underlying distribution of the data, are not in general efficient. In particular, when the distribution of the data is leptokurtic, as is commonly found for short horizon asset returns, these estimators will attach too much weight to extreme observations. This article proposes an alternative to the standard approach to the estimation of the OHR that is robust to the leptokurtosis of returns. We use the robust OHR to construct a dynamic hedging strategy for daily returns on the FTSE100 index using index futures. We estimate the robust OHR using both the rolling window approach and the EWMA approach, and compare our results to those based on the standard rolling window and EWMA estimators. It is shown that the robust OHR yields a hedged portfolio variance that is marginally lower than that based on the standard estimator. Moreover, the variance of the robust OHR is as much as 70% lower than the variance of the standard OHR, substantially reducing the transaction costs that are associated with dynamic hedging strategies. © 2003 Wiley Periodicals, Inc. Jrl Fut Mark 23:799,816, 2003 [source]