Home About us Contact | |||
Sample Units (sample + unit)
Selected AbstractsMulti-scale occupancy estimation and modelling using multiple detection methodsJOURNAL OF APPLIED ECOLOGY, Issue 5 2008James D. Nichols Summary 1Occupancy estimation and modelling based on detection,nondetection data provide an effective way of exploring change in a species' distribution across time and space in cases where the species is not always detected with certainty. Today, many monitoring programmes target multiple species, or life stages within a species, requiring the use of multiple detection methods. When multiple methods or devices are used at the same sample sites, animals can be detected by more than one method. 2We develop occupancy models for multiple detection methods that permit simultaneous use of data from all methods for inference about method-specific detection probabilities. Moreover, the approach permits estimation of occupancy at two spatial scales: the larger scale corresponds to species' use of a sample unit, whereas the smaller scale corresponds to presence of the species at the local sample station or site. 3We apply the models to data collected on two different vertebrate species: striped skunks Mephitis mephitis and red salamanders Pseudotriton ruber. For striped skunks, large-scale occupancy estimates were consistent between two sampling seasons. Small-scale occupancy probabilities were slightly lower in the late winter/spring when skunks tend to conserve energy, and movements are limited to males in search of females for breeding. There was strong evidence of method-specific detection probabilities for skunks. As anticipated, large- and small-scale occupancy areas completely overlapped for red salamanders. The analyses provided weak evidence of method-specific detection probabilities for this species. 4Synthesis and applications. Increasingly, many studies are utilizing multiple detection methods at sampling locations. The modelling approach presented here makes efficient use of detections from multiple methods to estimate occupancy probabilities at two spatial scales and to compare detection probabilities associated with different detection methods. The models can be viewed as another variation of Pollock's robust design and may be applicable to a wide variety of scenarios where species occur in an area but are not always near the sampled locations. The estimation approach is likely to be especially useful in multispecies conservation programmes by providing efficient estimates using multiple detection devices and by providing device-specific detection probability estimates for use in survey design. [source] Spatial scale and the diversity of macroinvertebrates in a Neotropical catchmentFRESHWATER BIOLOGY, Issue 2 2010RAPHAEL LIGEIRO Summary 1.,Lotic ecosystems can be studied on several spatial scales, and usually show high heterogeneity at all of them in terms of biological and environmental characteristics. Understanding and predicting the taxonomic composition of biological communities is challenging and compounded by the problem of scale. Additive diversity partitioning is a tool that can show the diversity that occurs at different scales. 2.,We evaluated the spatial distribution of benthic macroinvertebrates in a tropical headwater catchment (S.E. Brazil) during the dry season and compared alpha and beta diversities at the scales of stream segments, reaches, riffles and microhabitats (substratum types: gravels, stones and leaf litter). We used family richness as our estimate of diversity. Sampling was hierarchical, and included three stream segments, two stream reaches per segment, three riffles per reach, three microhabitats per riffle and three Surber sample units per microhabitat. 3.,Classification analysis of the 53 families found revealed groups formed in terms of stream segment and microhabitat, but not in terms of stream reaches and riffles. Separate partition analyses for each microhabitat showed that litter supported lower alpha diversity (28%) than did stones (36%) or gravel (42%). In all cases, alpha diversity at the microhabitat scale was lower than expected under a null model that assumed no aggregation of the fauna. 4.,Beta diversity among patches of the microhabitats in riffles depended on substratum type. It was lower than expected in litter, similar in stone and higher in gravel. Beta diversities among riffles and among reaches were as expected under the null model. On the other hand, beta diversity observed was higher than expected at the scale of stream segments for all microhabitat types. 5., We conclude that efficient diversity inventories should concentrate sampling in different microhabitats and stream sites. In the present study, sampling restricted to stream segments and substratum types (i.e. excluding riffles and stream reaches) would produce around 75% of all observed families using 17% of the sampling effort employed. This finding indicates that intensive sampling (many riffles and reaches) in few stream segments does not result in efficient assessment of diversity in a region. [source] Spatio-temporal patterns of fish assemblages in a large regulated alluvial riverFRESHWATER BIOLOGY, Issue 7 2009RENAUD RIFFLART Summary 1. The River Durance, the last alpine tributary of the River Rhône, is a large, braided alluvial hydrosystem. Following large-scale regulation, flow downstream of the Serre-Ponçon dam has been maintained at 1/40th of previous annual mean discharge. To assess the effects of historical disturbances, fish assemblages and habitat use were analysed during five summers in a representative reach of the middle Durance. 2. Habitat availability and use were assessed with a multi-scale approach including the variables water depth, current velocity, roughness height of substratum, amount of woody debris and lateral/longitudinal location. Eighteen fish species were sampled by electrofishing in 289 habitat sample units. 3. Partial least square (PLS) regression showed that taxa were mainly distributed according to relationships between their total length and water depth/velocity variables. Fish assemblage composition was also related to roughness height as well as distance from the bank or to the nearest large woody debris. However, PLS regression revealed no significant differences in habitat selection between two periods of varying hydromorphological stability. 4. Fish distribution patterns and density were related to proximity to the bank and cover, indicating that local scale variables need to be considered in conservation and restoration programmes. [source] Hierarchical patterns of invertebrate assemblage structure in stony upland streams change with time and flow permanenceFRESHWATER BIOLOGY, Issue 6 2005B. J. ROBSON Summary 1. Studies in several parts of the world have examined variation in univariate descriptors of macroinvertebrate assemblage structure in perennially flowing stony streams across hierarchies of spatial scale using nested analyses of variance. However, few have investigated whether this spatial variation changes with time or whether these results are representative of habitats other than riffles or of other stream types, such as intermittently flowing streams. 2. We describe patterns in taxon richness and abundance from two sets of samples from stony streams in the Otway Range and the Grampians Range, Victoria, Australia, collected using hierarchical designs. Sampling of riffles was repeated in the Otways, to determine whether spatial patterns were consistent among times. In the Grampians, spatial patterns were compared between intermittent and perennially flowing streams (stream type) by sampling pools. 3. In the Otways streams, most variation in the dependent variables occurred between sample units. Patterns of variation among the other scales (streams, segments, riffles, groups of stones) were not consistent between sampling times, suggesting that they may have little ecological significance. 4. In the Grampians streams, variation in macroinvertebrate taxon richness and abundance differed significantly between replicate streams within each stream type but not between stream types or pools. The largest source of variation in taxon richness was stream type. Little variation occurred among sample units. 5. The pattern of most variation occurring among sample units is robust both to differences in the method of sampling and different dependent variables among studies and increasingly appears to be a property of riffles in stony, perennial upland streams. High variation among sample units (residual variation) limits the explanatory power of linear models and therefore, where samples are from a single sampling time, small but significant components of variation are unlikely to represent features of assemblage structure that will be stable over time. [source] Historical and contemporary distributions of carnivores in forests of the Sierra Nevada, California, USAJOURNAL OF BIOGEOGRAPHY, Issue 8 2005William J. Zielinski Abstract Aim, Mammalian carnivores are considered particularly sensitive indicators of environmental change. Information on the distribution of carnivores from the early 1900s provides a unique opportunity to evaluate changes in their distributions over a 75-year period during which the influence of human uses of forest resources in California greatly increased. We present information on the distributions of forest carnivores in the context of two of the most significant changes in the Sierra Nevada during this period: the expansion of human settlement and the reduction in mature forests by timber harvest. Methods, We compare the historical and contemporary distributions of 10 taxa of mesocarnivores in the conifer forests of the Sierra Nevada and southern Cascade Range by contrasting the distribution of museum and fur harvest records from the early 1900s with the distribution of detections from baited track-plate and camera surveys conducted from 1996 to 2002. A total of 344 sample units (6 track plates and 1 camera each) were distributed systematically across c. 3,000,000 ha area over a 7-year period. Results, Two species, the wolverine (Gulo gulo) and the red fox (Vulpes vulpes), present in the historical record for our survey area, were not detected during the contemporary surveys. The distributions of 3 species (fisher [Martespennanti], American marten [M. americana], and Virginia opossum [Didelphisvirginiana]) have substantially changed since the early 1900s. The distributions of fishers and martens, mature-forest specialists, appeared to have decreased in the northern Sierra Nevada and southern Cascade region. A reputed gap in the current distribution of fishers was confirmed. We report for the first time evidence that the distribution of martens has become fragmented in the southern Cascades and northern Sierra Nevada. The opossum, an introduced marsupial, expanded its distribution in the Sierra Nevada significantly since it was introduced to the south-central coast region of California in the 1930s. There did not appear to be any changes in the distributions of the species that were considered habitat generalists: gray fox (Urocyon cinereoargenteus), striped skunk (Mephitis mephitis), western spotted skunk (Spilogale gracilis), or black bear (Ursus americanus). Detections of raccoons (Procyon lotor) and badgers (Taxidea taxus) were too rare to evaluate. Contemporary surveys indicated that weasels (M. frenata and M. erminea) were distributed throughout the study area, but historical data were not available for comparison. Main conclusions, Two species, the wolverine and Sierra Nevada red fox, were not detected in contemporary surveys and may be extirpated or in extremely low densities in the regions sampled. The distributions of the mature forest specialists (marten and fisher) appear to have changed more than the distributions of the forest generalists. This is most likely due to a combination of loss of mature forest habitat, residential development and the latent effects of commercial trapping. Biological characteristics of individual species, in combination with the effect of human activities, appear to have combined to affect the current distributions of carnivores in the Sierra Nevada. Periodic resampling of the distributions of carnivores in California, via remote detection methods, is an efficient means for monitoring the status of their populations. [source] Structure of Anogeissus leiocarpa Guill., Perr. natural stands in relation to anthropogenic pressure within Wari-Maro Forest Reserve in BeninAFRICAN JOURNAL OF ECOLOGY, Issue 3 2010Achille Ephrem Assogbadjo Abstract The present study focused on the analysis of the structure of the Anogeissus leiocarpa dominated natural stands in the Wari-Maro forest reserve which are under high and minimal anthropogenic pressures. These stands were considered for forest inventories after carrying out a random sampling scheme of 40 sample units of 30 m × 50 m. In each level pressure stand, the dbh and tree-height of identified tree-species were measured in each plot. Data analyses were based on the computation of structural parameters, establishment of diameter and height distributions and the floristic composition of the two types of stands. Results obtained showed higher values for the overall basal area (9.78 m2 ha,1), mean height (22.37 m) and mean diameter (36.92 cm) for A. leiocarpa in low-pressure stands. In high-pressure stands, some species like Afzelia africana had lower Importance Value Index and the frequency of A. leiocarpa trees in the successive diameter classes dropped rapidly and the value of the logarithmic slope of the height,diameter relationship was lower (9.77) indicating a lanky shape. Results obtained suggest that effective conservation is needed for A. leiocarpa stands under high pressure by limiting human interference and developing appropriate strategy for restoration purposes. Résumé Cette étude s'est focalisée sur l'analyse de la structure de peuplements naturels à dominance de Anogeissus leiocarpa, dans la forêt classée de Wari-Maro, qui subissent à certains endroits, des pressions anthropiques fortes et à d'autres endroits des pressions anthropiques minimes. Ces peuplements ont été inventoriés en considérant un échantillonnage aléatoire de 40 placeaux de 30 m × 50 m. Pour chaque niveau de pression, on a mesuré dans chaque placeau le diamètre à 1,3 m et la hauteur totale des arbres d'espèces identifiées. L'analyse des données s'est basée sur le calcul des paramètres structuraux, sur l'établissement de la distribution en diamètre et en hauteur et sur la composition floristique des peuplements des deux types de formation. Les résultats obtenus indiquent les plus grandes valeurs pour la surface terrière globale (9,78 m² ha,1), la hauteur moyenne (22,37 m) et le diamètre moyen (36,92 cm) chez A. leiocarpa dans les peuplements soumis à une faible pression. Dans les peuplements subissant une forte pression, certaines espèces comme Afzelia africana avaient les plus faibles Indices d'importance, la fréquence de A. leiocarpa dans les classes de hauteurs successives diminuait rapidement et la valeur de la pente logarithmique de la relation hauteur/diamètre était plus faible (9,77), ce qui indique une forme élancée. Les résultats obtenus suggèrent que les peuplements de A. leiocarpa sous forte pressions anthropiques requièrent une conservation efficace, en limitant les pertubations humaines et en développant une stratégie appropriée en vue de leur restauration. [source] Occupancy frequency distributions: patterns, artefacts and mechanismsBIOLOGICAL REVIEWS, Issue 3 2002MELODIE A. McGEOCH ABSTRACT Numerous hypotheses have been proposed to explain the shape of occupancy frequency distributions (distributions of the numbers of species occupying different numbers of areas). Artefactual effects include sampling characteristics, whereas biological mechanisms include organismal, niche-based and metapopulation models. To date, there has been little testing of these models. In addition, although empirically derived occupancy distributions encompass an array of taxa and spatial scales, comparisons between them are often not possible because of differences in sampling protocol and method of construction. In this paper, the effects of sampling protocol (grain, sample number, extent, sampling coverage and intensity) on the shape of occupancy distributions are examined, and approaches for minimising artefactual effects recommended. Evidence for proposed biological determinants of the shape of occupancy distributions is then examined. Good support exists for some mechanisms (habitat and environmental heterogeneity), little for others (dispersal ability), while some hypotheses remain untested (landscape productivity, position in geographic range, range size frequency distributions), or are unlikely to be useful explanations for the shape of occupancy distributions (species specificity and adaptation to habitat, extinction,colonization dynamics). The presence of a core (class containing species with the highest occupancy) mode in occupancy distributions is most likely to be associated with larger sample units, and small homogenous sampling areas positioned well within and towards the range centers of a sufficient proportion of the species in the assemblage. Satellite (class with species with the lowest occupancy) modes are associated with sampling large, heterogeneous areas that incorporate a large proportion of the assemblage range. However, satellite modes commonly also occur in the presence of a core mode, and rare species effects are likely to contribute to the presence of a satellite mode at most sampling scales. In most proposed hypotheses, spatial scale is an important determinant of the shape of the observed occupancy distribution. Because the attributes of the mechanisms associated with these hypotheses change with spatial scale, their predictions for the shape of occupancy distributions also change. To understand occupancy distributions and the mechanisms underlying them, a synthesis of pattern documentation and model testing across scales is thus needed. The development of null models, comparisons of occupancy distributions across spatial scales and taxa, documentation of the movement of individual species between occupancy classes with changes in spatial scale, as well as further testing of biological mechanisms are all necessary for an improved understanding of the distribution of species and assemblages within their geographic ranges. [source] |