Same Leaves (same + leaf)

Distribution by Scientific Domains


Selected Abstracts


Herbivores and pathogens on willow: do they affect each other?

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 4 2003
Matthias Simon
Abstract 1,Willows often need to cope with attack by both rust fungi and herbivores. We studied whether rust infection on willow affects the herbivore, and vice versa, whether herbivore feeding affects the fungal infection. The system investigated by laboratory bioassays and greenhouse experiments consisted of the willow hybrid Salix × cuspidata, the rust Melampsora allii-fragilis and the willow leaf beetle Plagiodera versicolora. Effects were studied both on a local scale (rust infection and feeding on the same leaf) and systemically (rust infection and feeding on different, but adjacent leaves). 2,Rust infection was not affected by herbivore feeding on a local scale. Systemically, however, the willow's susceptibility towards rust infection was increased by herbivore feeding, as indicated by a higher number of rust sori on leaves adjacent to feeding-damaged leaves. The herbivore's performance was detrimentally affected by rust infection: increase of mortality (systemically), decrease of larval weight (locally and systemically) and prolonging of developmental time (locally and systemically). 3,Previous rust infection enhanced systemically the willow's susceptibility towards subsequent fungal infection. Previous herbivore feeding on the willow had no effects on the herbivore's developmental time and mortality. However, feeding upon previously feeding-damaged willow leaves significantly reduced larval weight. [source]


Pronounced genetic diversity in tropical epiphyllous lichen fungi

MOLECULAR ECOLOGY, Issue 10 2009
ELISABETH BALOCH
Abstract Lowland tropical habitats harbour an unexplored genetic diversity of epiphyllous fungi. In the shade of rainforest understoreys, lichenized fungi are specialized to an ephemeral habitat where they produce little vegetative biomass and develop reproductive structures early. In a first population genetic study of epiphyllous lichen fungi, we analysed the intraspecific genetic diversity of five leaf-colonizing lichen mycobiont species. Sampling focused on a lowland perhumid forest plot in Costa Rica, with additional collections from other localities throughout the country. In all species we detected sympatric occurrence of highly diverged haplotypes. Haplotypes belonging to distinct clades in networks were also found on the same leaf, clearly indicating multiple independent colonization events on single leaves. Despite the unusually high genetic diversity of these leaf-colonizing tropical fungi, we did not detect pronounced spatial structure of the haplotype distribution between geographical regions. The observed patterns suggest that the diversity of foliicolous lichens could be much higher than expected, with several cryptic genetic lineages within each morphologically characterized species. [source]


Leaf volatiles as attractants for neonate Helicoverpa armigera Hbn. (Lep., Noctuidae) larvae

JOURNAL OF APPLIED ENTOMOLOGY, Issue 1 2002
A. K. Singh
The 1st instar Helicoverpa armigera larvae were bioassayed in the laboratory to study their orientational responses towards leaf volatiles of four leguminous crops: chickpea, Cicer arietinum L.; pigeonpea, Cajanus cajan Millsp.; blackgram, Vigna mungo L.; and cowpea, Vigna unguiculata L. (Walp.). The gram podborer larvae showed positive orientational responses towards leaves of all four test plants. Whole leaves of chickpea, pigeonpea and blackgram were more attractive for gram podborer larvae than cowpea whole leaves. Larval attraction for crushed (damaged) leaves of chickpea, blackgram and cowpea was significantly higher than the attraction for pigeonpea crushed leaves. The orientational responses of gram podborer larvae for crushed leaves of cowpea were significantly higher compared to whole leaves. However, the whole pigeonpea leaves elicited higher orientational responses than the crushed leaves. Maceration was not observed to affect the attractancy of chickpea and blackgram leaves. Further, the leaves were extracted in n-hexane and methanol. It was observed that the crude extracts of all the test leaves elicited positive orientational responses of larvae. In no-choice tests, the orientational preference of the larvae for the hexane extracts of all the test leaves was statistically equal. Similarly, the methanol extracts of leaves of all the test plants also attracted a greater percentage of larvae in no-choice tests. However, under two-choice bioassays, hexane foliage extract of all the test plants elicited higher orientational responses of larvae compared to the methanolic extracts of same leaves. The results of these bioassays clearly indicate that all the test leaves emit kairomones for gram podborer larvae. Moreover, kairomonal components of these leaves are, at least in part, extractable in hexane and methanol, which are higher in hexane than methanol. [source]


Leaf growth and turgor in growing cells of maize (Zea mays L.) respond to evaporative demand under moderate irrigation but not in water-saturated soil

PLANT CELL & ENVIRONMENT, Issue 6 2006
OUMAYA BOUCHABKÉ
ABSTRACT To test whether the inhibition of leaf expansion by high evaporative demand is a result of hydraulic processes, we have followed both leaf elongation rate (LER) and cell turgor in leaves of maize plants either normally watered or in water-saturated soil in which hydraulic resistance at the soil,root interface was abolished. Cell turgor was measured in situ with a pressure probe in the elongating zone of the first and sixth leaves, and LERs of the same leaves were measured continuously with transducers or by following displacements of marks along the growing leaves. Both variables displayed spatial variations along the leaf and positively correlated within the elongating zone. Values peaked at mid-distance of this zone, where the response of turgor to evaporative demand was further dissected. High evaporative demand decreased both LER and turgor for at least 5 h, with dose-effect linear relations. This was observed in five genotypes with appreciable differences in turgor maintenance among genotypes. In contrast, the depressing effects of evaporative demand on both turgor and LER disappeared when the soil was saturated, thereby opposing a negligible resistance to water flow at the soil,root interface. These results suggest that the response of LER to evaporative demand has a hydraulic origin, enhanced by the resistance to water flux at the soil,root interface. They also suggest that turgor is not completely maintained under high evaporative demand, and may therefore contribute to the reductions in LER observed in non-saturated soils. [source]


Adjustment of leaf photosynthesis to shade in a natural canopy: rate parameters

PLANT CELL & ENVIRONMENT, Issue 3 2005
A. LAISK
ABSTRACT The present study was performed to investigate the adjustment of the rate parameters of the light and dark reactions of photosynthesis to the natural growth light in leaves of an overstorey species, Betula pendula Roth, a subcanopy species, Tilia cordata P. Mill., and a herb, Solidago virgaurea L., growing in a natural plant community in Järvselja, Estonia. Shoots were collected from the site and individual leaves were measured in a laboratory applying a standardized routine of kinetic gas exchange, Chl fluorescence and 820 nm transmittance measurements. These measurements enabled the calculations of the quantum yield of photosynthesis and rate constants of excitation capture by photochemical and non-photochemical quenchers, rate constant for P700+ reduction via the cytochrome b6f complex with and without photosynthetic control, actual maximum and potential (uncoupled) electron transport rate, stomatal and mesophyll resistances for CO2 transport, Km(CO2) and Vm of ribulose-bisphosphate carboxylase-oxygenase (Rubisco) in vivo. In parallel, N, Chl and Rubisco contents were measured from the same leaves. No adjustment toward higher quantum yield in shade compared with sun leaves was observed, although relatively more N was partitioned to the light-harvesting machinery in shade leaves (H. Eichelmann et al., 2004). The electron transport rate through the Cyt b6f complex was strongly down-regulated under saturating light compared with darkness, and this was observed under atmospheric, as well as saturating CO2 concentration. In vivo Vm measurements of Rubisco were lower than corresponding reported measurements in vitro, and the kcat per reaction site varied widely between leaves and growth sites. The correlation between Rubisco Vm and the photosystem I density was stronger than between Vm and the density of Rubisco active sites. The results showed that the capacity of the photosynthetic machinery decreases in shade-adjusted leaves, but it still remains in excess of the actual photosynthetic rate. The photosynthetic control systems that are targeted to adjust the photosynthetic rate to meet the plant's needs and to balance the partial reactions of photosynthesis, down-regulate partial processes of photosynthesis: excess harvested light is quenched non-photochemically; excess electron transport capacity of Cyt b6f is down-regulated by ,pH-dependent photosynthetic control; Rubisco is synthesized in excess, and the number of activated Rubisco molecules is controlled by photosystem I-related processes. Consequently, the nitrogen contained in the components of the photosynthetic machinery is not used at full efficiency. The strong correlation between leaf nitrogen and photosynthetic performance is not due to the nitrogen requirements of the photosynthetic apparatus, but because a certain amount of energy must be captured through photosynthesis to maintain this nitrogen within a leaf. [source]


Adjustment of leaf photosynthesis to shade in a natural canopy: reallocation of nitrogen

PLANT CELL & ENVIRONMENT, Issue 3 2005
H. EICHELMANN
ABSTRACT The present study was performed to investigate the adjustment of the constituents of the light and dark reactions of photosynthesis to the natural growth irradiance in the leaves of an overstorey species, Betula pendula Roth, a subcanopy species Tilia cordata P. Mill., and a herb Solidago virgaurea L. growing in a natural plant community in Järvselja, Estonia. Shoots were collected from the site and properties of individual leaves were measured in a laboratory, by applying a routine of kinetic gas exchange and optical measurements that revealed photosystem II (PSII), photosystem I (PSI), and cytochrome b6f densities per leaf area and the distribution of excitation (or chlorophyll, Chl) between the two photosystems. In parallel, N, Chl and ribulose-bisphosphate carboxylase-oxygenase (Rubisco) content was measured from the same leaves. The amount of N in photosynthetic proteins was calculated from the measured contents of the components of the photosynthetic machinery. Non-photosynthetic N was found as the residual of the budget. Growth in shade resulted in the decrease of leaf dry mass to a half of the DW in sun leaves in each species, but the total variation, from the top to the bottom of the canopy, was larger. Through the whole cross-section of the canopy, leaf dry weight (DW) and Rubisco content per area decreased by a factor of four, N content by a factor of three, but Chl content only by a factor of 1.7. PSII density decreased by a factor of 1.9, but PSI density by a factor of 3.2. The density of PSI adjusted to shade to a greater extent than the density of PSII. In shade, the distribution of N between the components of the photosynthetic machinery was shifted toward light-harvesting proteins at the expense of Rubisco. Non-photosynthetic N decreased the most substantially, from 54% in the sun leaves of B. pendula to 11% in the shade leaves of T. cordata. It is concluded that the redistribution of N toward light-harvesting Chl proteins in shade is not sufficient to keep the excitation rate of a PSII centre invariant. Contrary to PSII, the density of PSI , the photosystem that is in immediate contact with the carbon assimilation system , shade-adjusts almost proportionally with the latter, whereas its Chl antenna correspondingly increases. Even under N deficiency, a likely condition in the natural plant community, a substantial part of N is stored in non-photosynthetic proteins under abundant irradiation, but much less under limiting irradiation. At least in trees the general sequence of down-regulation due to shade adjustment is the following: (1) non-protein cell structures and non-photosynthetic proteins; (2) carbon assimilation proteins; (3) light reaction centre proteins, first PSI; and (4) chlorophyll-binding proteins. [source]