Same Chemistry (same + chemistry)

Distribution by Scientific Domains


Selected Abstracts


Wetting Behavior of Amorphous and Crystalline Silicon Dioxide in Contact with a Silicate Slag Based on Fayalite

ADVANCED ENGINEERING MATERIALS, Issue 4 2010
Christos G. Aneziris
In this work the wetting behaviour of amorphous and crystalline silicon dioxide in contact with a silicate slag based on fayalite is demonstrated as a function of contact angles, activation energies of the kinetic stages of wetting. In addition the dynamic adhesion work has been calculated as a function of the inclination angle. The amorphous silicon dioxide in contact with the slag presents lower contact angles accompanied also by higher dynamic adhesion works in comparison to crystalline porous ceramics with the same chemistry. [source]


2-Substituted Benzo[b]furans from (E)-1,2-Dichlorovinyl Ethers and Organoboron Reagents: Scope and Mechanistic Investigations into the One-Pot Suzuki Coupling/Direct Arylation,

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 29 2010
Laina M. Geary
Abstract 2-Substituted benzo[b]furans can easily be assembled from simple phenols, boronic acids or other organoboron reagents, and trichloroethylene. The overall process requires only two synthetic steps, with the key step being a one-pot sequential Suzuki cross-coupling/direct arylation reaction. The method tolerates many useful functional groups and does not require the installation of any other activating functionality. The modular nature of the process permits the rapid synthesis of many analogues using essentially the same chemistry, of particular value in drug development. Results of kinetic isotope effect studies and investigations into the regioselectivity of the process indicate that the direct arylation step most likely does not involve an electrophilic palladation. The most likely mechanism lies somewhere on the continuum between a C,H bond metathesis and an assisted palladation or concerted metallation-deprotonation pathway. [source]


The RNA-Cleaving Bipartite DNAzyme Is a Distinctive Metalloenzyme

CHEMBIOCHEM, Issue 1 2006
Anat R. Feldman Dr.
Abstract Much interest has focused on the mechanisms of the five naturally occurring self-cleaving ribozymes, which, in spite of catalyzing the same reaction, adopt divergent strategies. These ribozymes, with the exception of the recently described glmS ribozyme, do not absolutely require divalent metal ions for their catalytic chemistries in vitro. A mechanistic investigation of an in vitro-selected, RNA-cleaving DNA enzyme, the bipartite, which catalyzes the same chemistry as the five natural self-cleaving ribozymes, found a mechanism of significant complexity. The DNAzyme showed a bell-shaped pH profile. A dissection of metal usage indicated the involvement of two catalytically relevant magnesium ions for optimal activity. The DNAzyme was able to utilize manganese(II) as well as magnesium; however, with manganese it appeared to function complexed to either one or two of those cations. Titration with hexaamminecobalt(III) chloride inhibited the activity of the bipartite; this suggests that it is a metalloenzyme that utilizes metal hydroxide as a general base for activation of its nucleophile. Overall, the bipartite DNAzyme appeared to be kinetically distinct not only from the self-cleaving ribozymes but also from other in vitro-selected, RNA-cleaving deoxyribozymes, such as the 8,17, 10,23, and 614. [source]


Synthesis, Surface Modifications, and Size-Sorting of Mixed Nickel,Zinc Ferrite Colloidal Magnetic Nanoparticles

CHEMISTRY - A EUROPEAN JOURNAL, Issue 26 2008
P. Majewski
Abstract We report on the spontaneous covalent growth of monomolecular adlayers on mixed nickel,zinc nanoferrite colloidal suspensions (ferrofluids). Synthesized nanoparticles were subjected to surface modification by means of acid chloride chemistry, leading to the formation of covalent bonds between the hydroxy groups at the nanoparticle surface and the acid chloride molecules. This procedure can be easily tailored to allow for the formation of adlayers containing both hydrophobic and hydrophilic regions stacked at predetermined distances from the magnetic core, and also providing the nanoferrites with functional carboxy groups capable of further modifications with, for example, drug molecules. Here, fluorophore aminopyrene molecules were bound to such modified nanoferrites through amide bonds. We also used the same chemistry to modify the surface with covalently bound long-chain palmitoyl moieties, and for comparison we also modified the nanoferrite surface by simple adsorption of oleic acid. Both procedures made the surface highly hydrophobic. These hydrophobic colloids were subsequently spread on an aqueous surface to form Langmuir monolayers with different characteristics. Moreover, since uniformity of size is crucial in a number of applications, we propose an efficient way of sorting the magnetic nanoparticles by size in their colloidal suspension. The suspension is centrifuged at increasing rotational speed and the fractions are collected after each run. The mean size of nanoferrite in each fraction was measured by the powder X-ray diffraction (PXRD) technique. [source]