Home About us Contact | |||
Salinity Waters (salinity + water)
Kinds of Salinity Waters Selected AbstractsDietary supplementation of mannan oligosaccharide on white sea bream (Diplodus sargus L.) larvae: effects on development, gut morphology and salinity toleranceAQUACULTURE RESEARCH, Issue 9 2010Arkadios Dimitroglou Abstract The influence of dietary mannan oligosaccharide (MOS) on the development, gut integrity and quality (in respect of stamina and survivability) of white sea bream Diplodus sargus L. larvae was investigated. White sea bream larvae were held under appropriate rearing conditions and fed Artemia, enriched by A1 DHA SelcoÔ with the addition or absence of MOS (Bio-Mos®). The results indicated that larval growth performance and survivability were not affected by the MOS supplementation. Light microscopy revealed that MOS supplementation significantly improved the intestinal morphology by increasing the villi surface area by over 12%. Transmission electron microscopy revealed that MOS supplementation increased the microvilli length by 26% compared with the control. Salinity challenge experiments showed that MOS significantly increased larval stamina and survival in both 0 and 60 mg L,1 salinity water by 13% and 22.9% respectively. These improvements in the larval quality at the early stages of fish development are important for the efficiency of intensive hatchery production. [source] Impact of rootstock on yield and ion concentrations in petioles, juice and wine of Shiraz and Chardonnay in different viticultural environments with different irrigation water salinityAUSTRALIAN JOURNAL OF GRAPE AND WINE RESEARCH, Issue 1 2010R.R. WALKER Abstract Background and Aims: Within-site comparisons were made of rootstock effects on yield, and chloride and sodium concentrations in petioles, juice and wine of Shiraz and Chardonnay vines at sites with irrigation water salinities (ECiw) ranging from low (0.4 dS/m) to moderate-high (1.8 to 3.3 dS/m). It also compared consistency of yield performance of the various rootstocks with both scions over 8 years at one site with an ECiw of 2.1 dS/m. Methods and Results: Chardonnay and Shiraz on own roots and on Ramsey, 1103 Paulsen, 140 Ruggeri, K51-40, Schwarzmann, 101-14, Rupestris St. George and 1202 Couderc were compared. Ramsey resulted in better yields relative to most of the other rootstocks at three of the four sites for each scion. Exceptions were the low salinity site where Schwarzmann was best with Chardonnay, and Padthaway where 140 Ruggeri was best with Shiraz. Chardonnay wine chloride concentrations were similar to grape juice chloride concentrations, but Shiraz wine chloride concentrations were on average 1.7-fold higher than grape juice chloride. Conclusions: Shiraz on own roots, K51-40 and 1202C rootstocks carry some risk of accumulating unacceptable levels of chloride in grape juice and wine when the salinity of the irrigation water is at moderate to high levels. Rootstocks K51-40 (with Chardonnay and Shiraz) and potentially 101-14 (with Shiraz) should be avoided in situations of long term irrigation with moderate to high salinity water. Significance of the Study: The study identifies rootstocks with acceptable yields and grape juice chloride concentrations for potential use in regions affected by salinity. [source] Growth and movement patterns of early juvenile European anchovy (Engraulis encrasicolus L.) in the Bay of Biscay based on otolith microstructure and chemistryFISHERIES OCEANOGRAPHY, Issue 3 2010NAROA ALDANONDO Abstract Various hypotheses have been put forward to explain the mechanisms in the Bay of Biscay that result in a good recruitment of European anchovy. Anchovy larvae from the spawning area in the Gironde River plume are advected towards off-shelf waters, where juveniles are commonly observed. Otolith microstructural and chemical analysis were combined to assess the importance of this off-shelf transport and to determine the relative contribution of these areas for anchovy survival. Chemical analysis of otoliths showed that anchovy juveniles in the Bay of Biscay can be divided into two groups: a group that drifts towards off-shelf waters early in their life and returns later, and a group that remains in the low salinity waters of the coastal area. The first group presents significantly faster growth rates (0.88 mm day,1) than those remaining in the coastal waters (0.32 mm day,1). This may be due to off-shelf waters being warmer in spring/summer, and to the fact that the lower food concentration is compensated for by higher prey visibility. Furthermore, the group of juveniles that drifted off the spawning area and had faster growth rates represents 99% of the juvenile population. These findings support the hypothesis that anchovy in the Bay of Biscay may use off-shelf waters as a spatio-temporal loophole, suggesting that transport off the shelf may be favourable for recruitment. [source] Demonstration of alternative feeds for the Pacific white shrimp, Litopenaeus vannamei, reared in low salinity waters of west AlabamaAQUACULTURE RESEARCH, Issue 4 2009Luke A Roy Abstract The replacement of marine proteins with vegetable proteins or terrestrial animal byproducts in aquaculture diets has been gaining momentum. This study examines the viability of replacing fish meal in shrimp production diets with alternative protein sources (combinations of vegetable proteins) in inland low salinity waters of west Alabama. The test diets were formulated to contain 36% protein and 8% lipid. The basal diet contained 10% fish meal. The fish meal was then replaced (on a weight to weight basis) with poultry meal (PM), pea meal or distiller's dried grain with solubles (DDGS). Two separate experiments (laboratory trial and farm trial) were devised to test the efficacy of the diets for Litopenaeus vannamei reared in low salinity waters. The laboratory trial was conducted at the E. W. Shell Fisheries Research Station in Auburn, Alabama, USA, whereas the farm trial examined the same diets in an outdoor flow-through system at a low salinity shrimp farm in west Alabama. Results indicate no significant differences in shrimp growth, weight gain, survival or feed conversion ratio among dietary treatments, suggesting that PM, pea meal and DDGS can serve as alternatives to fish meal as a protein source for shrimp reared in low salinity environments. [source] |