Salinity Regimes (salinity + regime)

Distribution by Scientific Domains


Selected Abstracts


Multiple stressor effects of methoprene, permethrin, and salinity on limb regeneration and molting in the mud fiddler crab (UCA pugnax)

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2009
Todd A. Stueckle
Abstract Exposure to multiple stressors from natural and anthropogenic sources poses risk to sensitive crustacean growth and developmental processes. Applications of synthetic pyrethroids and insect growth regulators near shallow coastal waters may result in harmful mixture effects depending on the salinity regime. The potential for nonadditive effects of a permethrin (0.01,2 ,g/L), methoprene (0.03,10 ,g/L), and salinity (10,40 ppt) exposure on male and female Uca pugnax limb regeneration and molting processes was evaluated by employing a central composite rotatable design with multifactorial regression. Crabs underwent single-limb autotomy followed by a molting challenge under 1 of 16 different mixture treatments. During the exposure (21,66 d), individual limb growth, major molt stage duration, abnormal limb regeneration, and respiration were monitored. At 6 d postmolt, changes in body mass, carapace width, and body condition factor were evaluated. Dorsal carapace tissue was collected, and protein and chitin were extracted to determine the composition of newly synthesized exoskeleton. The present results suggest chronic, low-dose exposures to multiple pesticide stressors cause less-than-additive effects on U. pugnax growth processes. Under increasing concentrations of methoprene and permethrin, males had more protein in their exoskeletons and less gain in body mass, carapace width, and body condition compared to females. Females exhibited less gain in carapace width than controls in response to methoprene and permethrin. Females also displayed elevated respiration rates at all stages of molt, suggesting a high metabolic rate. Divergent growth and fitness between the sexes over the long term could influence crustacean population resilience. [source]


The effect of parental acclimation to spawning salinity on the survival of larval Cynoscion nebulosus

JOURNAL OF FISH BIOLOGY, Issue 3 2002
C. J. Kucera
The yolk and oil depletion of eggs and larvae of spotted seatrout Cynoscion nebulosus, produced by fish collected from two bays with historically different salinity regimes (Matagorda Bay (MB; 18-24%) and Upper Laguna Madre (ULM; 40,50%), Texas, U.S.A. and spawned in salinities of 20, 30 and 40%, differed in their response to both salinity and history. Time to 90% yolk depletion was significantly longer for low salinity bay fish (MB) kept at 20%, but not for high salinity bay fish (ULM) at 20%. The neutral buoyancy salinity of 1 and 2 day old MB 20% larvae was significantly lower than that of MB larvae spawned in 30 or 40%. Overall, eggs and larvae spawned by MB fish were able to hatch out and survive to 3 days post-hatch in lower salinities than those from ULM. Furthermore, the tolerance of eggs and larvae to very low salinities increased with decreasing spawning salinity. The ability of 1,9 day old ULM, but not MB, larvae to survive 18 h exposure to salinities above or below that of spawning exhibited an age-dependent pattern with day 3 being the most sensitive. This study shows that the response of spotted seatrout eggs and larvae to changes in salinity is dependent upon the spawning salinity of the adults and the prevailing salinity regime within the bay. [source]


Effect of diet on otolith composition in Pomatomus saltatrix, an estuarine piscivore

JOURNAL OF FISH BIOLOGY, Issue 6 2004
J. A. Buckel
To test the hypothesis that elemental composition of otoliths (sagittae) could be influenced by differences in natural prey type, young-of-the-year bluefish Pomatomus saltatrix were captured immediately after their migration from oceanic waters into mid-Atlantic Bight estuaries and fed either shrimp, Crangon septemspinosa and Palaemonetes spp. or fish Menidia menidia under similar temperature and salinity regimes in two separate 60 day experiments. Unlimited rations of fish and shrimp prey were provided in the first experiment which led to differences in bluefish growth rate between the two prey treatments; fish prey was limited in the second experiment to ensure that growth rates of bluefish in the two prey treatments were similar. Concentrations of seven elements in bluefish otoliths were determined using solution-based inductively coupled plasma mass spectrometry (ICPMS). There was no significant effect of diet on five of the seven elements examined (Na, Mg, K, Ca and Mn). The levels of Sr and Ba in the otoliths of shrimp-fed bluefish, however, were significantly higher than fish-fed bluefish in both experiments. Concentrations of Ba in shrimp-fed bluefish otoliths were double that found in fish-fed bluefish. The results suggest that diet can explain some of the variation in otolith chemistry previously attributed to physical and chemical properties of the water. [source]


The effect of parental acclimation to spawning salinity on the survival of larval Cynoscion nebulosus

JOURNAL OF FISH BIOLOGY, Issue 3 2002
C. J. Kucera
The yolk and oil depletion of eggs and larvae of spotted seatrout Cynoscion nebulosus, produced by fish collected from two bays with historically different salinity regimes (Matagorda Bay (MB; 18-24%) and Upper Laguna Madre (ULM; 40,50%), Texas, U.S.A. and spawned in salinities of 20, 30 and 40%, differed in their response to both salinity and history. Time to 90% yolk depletion was significantly longer for low salinity bay fish (MB) kept at 20%, but not for high salinity bay fish (ULM) at 20%. The neutral buoyancy salinity of 1 and 2 day old MB 20% larvae was significantly lower than that of MB larvae spawned in 30 or 40%. Overall, eggs and larvae spawned by MB fish were able to hatch out and survive to 3 days post-hatch in lower salinities than those from ULM. Furthermore, the tolerance of eggs and larvae to very low salinities increased with decreasing spawning salinity. The ability of 1,9 day old ULM, but not MB, larvae to survive 18 h exposure to salinities above or below that of spawning exhibited an age-dependent pattern with day 3 being the most sensitive. This study shows that the response of spotted seatrout eggs and larvae to changes in salinity is dependent upon the spawning salinity of the adults and the prevailing salinity regime within the bay. [source]


Effect of EPA/DHA ratios on the growth and survival of Galaxias maculatus (Jenyns, 1842) larvae reared under different salinity regimes

AQUACULTURE RESEARCH, Issue 9 2010
Patricio Dantagnan
Abstract Despite the importance of certain highly unsaturated fatty acids in osmotic regulation, few studies have been addressed to determine the essential fatty acid requirements for a given species cultured under different salinities. As Galaxias maculatus is a diadromic species, the present study aimed to determine the effect of salinity on the optimum dietary EPA/docosahexaenoic (DHA) ratio for survival and growth during the larval stages. Larvae were fed for 20 days with rotifers containing two different EPA/DHA ratios (low: 0.64 and high: 2.18) at three different salinities (0, 10 and 15 g L,1). The results of this study showed a marked effect of water salinity on larval dietary lipid utilization in G. maculatus larvae. These results suggested that G. maculatus larvae reared at higher salinities may have a higher dietary requirement for DHA, whereas larvae reared at 0, showed higher requirements for EPA. The overall results of the present study indicate that even small changes in salinity can determine the optimum dietary EPA/DHA ratio and the quantitative essential fatty requirements of fish. This may have important repercussions and affect the rearing performance of G. maculatus cultured under different salinities. [source]


Population growth and mass mortality of an estuarine fish, Acanthopagrus butcheri, unlawfully introduced into an inland lake

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 1 2009
Kimberley Smith
Abstract 1.In 2006, two periods of hypoxia resulted in the death of approximately 35 tonnes of black bream (Acanthopagrus butcheri) in Lake Indoon, a small inland lake in Western Australia. 2.Acanthopagrus butcheri was the first fish species to be recorded in this lake, along with the mosquitofish (Gambusia holbrooki) which was also observed during sampling in 2006. Acanthopagrus butcheri appears to have been introduced to Lake Indoon between 1998 and 2003 and formed a self-sustaining population. It is believed to have been deliberately introduced for the purpose of creating a recreational fishery, despite the existence of substantial penalties for illegal translocation of fish in Western Australia. 3.Recent human-induced environmental changes, including rising groundwater and salinization, have probably aided the establishment of both species in Lake Indoon. The importance of salinity to recruitment success by A. butcheri was indicated by the presence of only two age classes in 2006, with estimated recruitment dates coinciding with the years of highest recorded salinity in the lake. 4.The ,fish kills' provided an opportunity to examine aspects of A. butcheri biology in a relatively low salinity environment which is atypical for this estuarine species. In particular, the recruitment period in Lake Indoon was delayed until autumn/winter, rather than spring/summer as seen in other populations. Biological responses in Lake Indoon have implications for natural populations living in estuaries with modified salinity regimes. 5.The ecological, social and economic impacts potentially arising from the introduction of fish to Lake Indoon, which is an important migratory bird habitat and a recreational amenity for local residents and tourists, illustrate the complexities of fish translocation and the need for rigorous assessment before stocking to identify potential costs and benefits. Copyright © 2008 John Wiley & Sons, Ltd. [source]