SaOS-2 Cells (saos-2 + cell)

Distribution by Scientific Domains


Selected Abstracts


Ultrasound-induced modifications of cytoskeletal components in osteoblast-like SAOS-2 cells

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2009
Joerg Hauser
Abstract In clinical and experimental studies an acceleration of fracture healing and increased callus formation induced by low-intensity pulsed ultrasound (LIPUS) has been demonstrated. The exact molecular mechanisms of ultrasound treatment are still unclear. In this study ultrasound transmitted cytoskeletal and growth rate changes of SAOS-2 cells were examined. Osteoblast-like cell lines (SAOS-2) were treated using low-intensity pulsed ultrasound. Cytoskeletal changes were analyzed using rhodamine phalloidine for f-actin staining and indirect immunofluorescence techniques with different monoclonal antibodies against several tubulin modifications. To examine changes of cell number after ultrasound treatment cell counts were done. Significant changes in cytoskeleton structure were detected compared to controls, including an enhancement of stress fiber formation combined with a loss of cell migration after ultrasound application. We further observed that sonication altered the proportion of the more stable microtubules to the more labile microtubule subclass. The labile tyrosinated microtubules appeared highly enhanced, whereas the amount of the more stable acetylated microtubules was remarkably diminished. All these observations were quantified by fluorometric measurements. The centrosomal ,-tubulin was frequently scattered throughout the cell's cytoplasm, giving rise to additional polyglu-positive microtubular asters, which induced multipolar spindles, leading either to aneuploid mini-or giant cells. Moreover, a significant increase of cell number was noticed in the sonicated group. These experiments demonstrate that ultrasound treatment increases cell number and leads to significant changes of the cytoskeletal structure and composition in vitro. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:286,294, 2009 [source]


Direct Measurement of Hormone-Induced Acidification in Intact Bone

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2000
Glenn S. Belinsky
Abstract Previous findings have shown that osteoblasts respond to parathyroid hormone (PTH) with an increase in extracellular acidification rate (ECAR) in addition to the known effect of PTH to increase local acidification by osteoclasts. We, therefore, investigated use of the Cytosensor to measure the ECAR response of whole intact bone to PTH employing microphysiometry. The Cytosensor measures a generic metabolic increase of cells to various agents. Using neonatal mouse calvaria, we found that the area surrounding the sagittal suture was particularly responsive to PTH. In this bone, the increase in ECAR was slower to develop (6 minutes) and more persistent than in cultured human osteoblast-like SaOS-2 cells and was preceded by a brief decrease in ECAR Salmon calcitonin also produced an increase in ECAR in this tissue but with a different pattern than that elicited by PTH. Because PTH stimulates osteoclastic bone resorption in mouse calvaria via a cyclic adenosine monophosphate (cAMP)-mediated mechanism, we showed that the adenylyl cyclase activator forskolin also stimulated ECAR in this tissue. When the protein kinase A (PKA) pathway was activated by maintaining a high intracellular concentration of cAMP using N6 -2,-0-dibutyryladenosine-cAMP (db-cAMP), there was a reduction of PTH-induced acidification, while isobutylmethylxanthine pretreatment potentiated the PTH-induced acidification, consistent with a PKA-mediated pathway. Thapsigargin and the protein kinase C (PKC) activator phorbol myristate acetate had no effect on the PTH-induced increase in ECAR in calvaria, indicating that PKC does not play a major role in the ECAR response in intact bone. These results indicate the utility of using microphysiometry to study ECAR responses in intact tissue and should enable elucidation of the relative importance of extracellular acidification by osteoblasts and osteoclasts to the anabolic and catabolic activities of PTH, respectively. [source]


PTH-dependent adenylyl cyclase activation in SaOS-2 cells: Passage dependent effects on G protein interactions

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2002
Hong Gao
Parathyroid hormone (PTH) sensitive adenylyl cyclase activity (ACA) in SaOS-2 cells varies as a function of cell passage. In early passage (EP) cells (<,6), ACA in response to PTH and forskolin (FOR) was relatively low and equivalent, whereas in late passage (LP) cells (>,22), PTH exceeded FOR dependent ACA. Potential biochemical mechanisms for this passage dependent change in ACA were considered. In EP, prolonged exposure to pertussis toxin (PT) markedly enhanced ACA activity in response to PTH, Isoproterenol and Gpp(NH)p, whereas ACA in response to FOR was decreased. In contrast, the identical treatment of LP with PT diminished all ACA in response to PTH, Gpp(NH)p, and FOR. The dose dependent effects of PT on subsequent [32P]ADP-ribosylation of its substrates, GTPase activity, as well as FOR-dependent ACA, were equivalent in EP and LP. The relative amounts of G,i and G,s proteins, as determined both by Western blot, PT and cholera toxin (CT) dependent [32P]ADP-ribosylation, were quantitatively similar in EP and LP. Western blot levels of G,s and G,i proteins were not influenced by prior exposure to PT. Both PT and CT dependent [32P]ADP-ribosylation were dose-dependently decreased following exposure to PT. However, the PT-dependent decline in CT-dependent [32P]ADP-ribosylation occurred with enhanced sensitivity in LP. The protein synthesis inhibitor cycloheximide partially reversed the PT associated decrease in FOR dependent ACA in EP. In contrast, cycloheximide completely reversed the PT associated decrease in FOR and as well as PTH dependent ACA in LP. G,s activity, revealed by cyc, reconstitution, was not altered either by cell passage or exposure to PT. The results suggest that the coupling between the components of the complex may be pivotally important in the differential responsiveness of early and late passage SaOS-2 cells to PTH. J. Cell. Physiol. 193: 10,18, 2002. © 2002 Wiley-Liss, Inc. [source]


Characterisation of ligand binding to the parathyroid hormone/parathyroid hormone-related peptide receptor in MCF7 breast cancer cells and SaOS-2 osteosarcoma cells

CELL BIOCHEMISTRY AND FUNCTION, Issue 2 2007
Majed S. Alokail
Abstract Parathyroid hormone-related peptide (PTHrP) and parathyroid hormone (PTH)/PTHrP-receptor, PTH/PTHrP-R, are frequently expressed in mammary carcinomas as well as in bone cells. In this study we compared the ligand binding characteristics of the PTH/PTHrP,R in SaOS-2 human osteosarcoma cells with those in MCF7 breast cancer cells. We used both Scatchard analysis of saturation kinetics for iodinated ligand and the level of expressed receptor protein by visualising the single radio-labelled receptor-ligand complex from isolated membrane preparations from the two cell lines. In MCF7 cells, ligand binding, (receptor number) was increased by prior exposure of the cultured cells to epidermal growth factor (EGF), estradiol (E2), or dexamethasone (DEX), and decreased following calcitriol (1,25 DHCC). In contrast in the SaOS-2 cells, PTH/PTHrP-R number was increased by exposure to E2 and 1,25DHCC and decreased by DEX while EGF had no effect. These data were confirmed when the PTH/PTHrP-R was cross linked with 125I-PTHrP-1-34Tyr, and extended by visualising the intensity of the isolated radiolabelled receptor complex by autoradiography following SDS-PAGE at several time points during the treatment. Copyright © 2005 John Wiley & Sons, Ltd. [source]


The importance of hormone receptor analysis in osteosarcoma cells growth submitted to treatment with estrogen in association with thyroid hormone

CELL BIOCHEMISTRY AND FUNCTION, Issue 1 2008
Patricia Pinto Saraiva
Abstract Bone tumor incidence in women peaks at age 50,60, coinciding with the menopause. That estrogen (E2) and triiodothyronine (T3) interact in bone metabolism has been well established. However, few data on the action of these hormones are available. Our purpose was to determine the role of E2 and T3 in the expression of bone activity markers, namely alkaline phosphatase (AP) and receptor activator of nuclear factor ,B ligand (RANKL). Two osteosarcoma cell lines: MG-63 (which has both estrogen (ER) and thyroid hormone (TR) receptors) and SaOs-29 (ER receptors only) were treated with infraphysiological E2 associated with T3 at infraphysiological, physiological, and supraphysiological concentrations. Real-time RT-PCR was used for expression analysis. Our results show that, in MG-63 cells, infraphysiological E2 associated with supraphysiological T3 increases AP expression and decreases RANKL expression, while infraphysiological E2 associated with either physiological or supraphysiological T3 decreases both AP and RANKL expression. On the other hand, in SaOs-2 cells, the same hormone combinations had no significant effect on the markers' expression. Thus, the analysis of hormone receptors was shown to be crucial for the assessment of tumor potential growth in the face of hormonal changes. Special care should be provided to patients with T3 and E2 hormone receptors that may increase tumor growth. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Inhibition of urokinase receptor gene expression and cell invasion by anti-uPAR DNAzymes in osteosarcoma cells

FEBS JOURNAL, Issue 14 2005
Charles E. De Bock
The urokinase-type plasminogen activator (uPA) receptor (uPAR) has been implicated in signal transduction and biological processes including cancer metastasis, angiogenesis, cell migration, and wound healing. It is a specific cell surface receptor for its ligand uPA, which catalyzes the formation of plasmin from plasminogen, thereby activating the proteolytic cascade that contributes to the breakdown of extracellular matrix, a key step in cancer metastasis. We have synthesized three different DNA enzymes (Dz372, Dz483 and Dz720) targeting uPAR mRNA at three separate purine (A or G),pyrimidine (U or C) junctions. Two of these DNAzymes, Dz483 and Dz720, cleaved uPAR transcript in vitro with high efficacy and specificity at a molar ratio (uPAR to Dz) as low as 1 : 0.2. When analyzed over 2 h with a 200-fold molar excess of DNAzymes to uPAR transcript, Dz720 and Dz483 were able to decrease uPAR transcript in vitro by ,,93% and ,,84%, respectively. They also showed an ability to cleave uPAR mRNA in the human osteosarcoma cell line Saos-2 after transfection. The DNAzyme Dz720 decreased uPAR mRNA within 4 h of transfection, and inhibited uPAR protein concentrations by 55% in Saos-2 cells. The decrease in uPAR mRNA and protein concentrations caused by Dz720 significantly suppressed Saos-2 cell invasion as assessed by an in vitro Matrigel assay. The use of DNAzyme methodology adds a new potential clinical agent for decreasing uPAR mRNA expression and inhibiting cancer invasion and metastasis. [source]


Synthetic pH-Responsive Polymers for Protein Transduction

ADVANCED MATERIALS, Issue 38-39 2009
William B. Liechty
A pH-responsive, endosomal membrane disruptive, metabolite-derived polyamide PP-75 is developed to deliver the MBP-Apoptin fusion protein, which induces tumor-specific apoptosis into human osteogenic sarcoma Saos-2 cells. The intracellular distribution and colocalization of MBP-Apoptin-AF647 (MA-AF649) and PP-75-FITC provide strong evidence that PP-75 both enhances uptake and facilitates cytoplasmic release of MBP-Apoptin. [source]


Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 7 2007
Yi Guo
Abstract We previously reported the Wnt receptor low-density lipoprotein receptor-related protein 5 (LRP5) was frequently expressed in osteosarcoma (OS) tissue and correlated with metastasis and a lower disease-free survival. Subsequent in vitro analysis revealed that dominant-negative, soluble LRP5 (sLRP5) can reduce in vitro cellular invasion. In the current study, we examined the molecular mechanisms of blocking canonical Wnt signaling by sLRP5 in Saos-2 osteosarcoma cells. Transfection of sLRP5 caused a marked up-regulation of E-cadherin in this cell line. This increase in E-cadherin, seen primarily at the cell,cell contact borders, was associated with down-regulation of Slug and Twist, transcriptional repressors which mediate cancer invasion and metastasis. In contrast, N-cadherin, a mesenchymal marker, was reduced by sLRP5. In addition, blocking Wnt signaling by sLRP5 modulated other epithelial and mesenchymal markers (keratin 8 and 18, fibronectin), suggesting a reversal of epithelial,mesenchymal transition (EMT) seen during cancer progression. SLRP5 also reduced the expression of matrix metalloproteinase (MMP) 2 and 14, consistent with a decrease in invasive capacity. SLRP5 transfection decreased both Met expression and hepatocyte growth factor (HGF)-induced cell motility. Taken together, these results support a role for Wnt/LRP5 signaling in invasiveness of a subset of OS cells. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:964,971, 2007 [source]


Effects of a 50 Hz sinusoidal magnetic field on cell adhesion molecule expression in two human osteosarcoma cell lines (MG-63 and Saos-2)

BIOELECTROMAGNETICS, Issue 5 2003
Maria Teresa Santini
Abstract The possibility that a sinusoidal 50 Hz magnetic field with a magnetic flux density of 0.5 mT can induce variations in the expression of cell adhesion molecules (CAMs) in two human osteosarcoma cell lines (MG-63 and Saos-2) was investigated. In particular, the expression of two important integrins, VLA-2, the receptor for collagen, and VLA-5, the receptor for fibronectin, as well as CD44, were examined in both cell lines after these had been exposed for 7 and 14 days to a 50 Hz, 0.5 mT field. Cell surface morphology (scanning electron microscopy), cell growth characteristics (growth curves and cell cycle phase distribution), and cell death (necrosis and apoptosis) were also examined. The results demonstrate that no variations in surface morphology and cell death occurred between control and exposed cells in both MG-63 and Saos-2 cells, while significant changes were noted in cell growth and fibronectin and CD44 expression in MG-63 cells. The results are discussed in view of the important role that CAMs play in controlling various cancer cell functions, particularly proliferation and metastasis. Bioelectromagnetics 24:327-338, 2003. © 2003 Wiley-Liss, Inc. [source]