Home About us Contact | |||
Sandwich Restorations (sandwich + restoration)
Selected AbstractsModified Class II open sandwich restorations: evaluation of interfacial adaptation and influence of different restorative techniquesEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 3 2002Ingrid E. Andersson-Wenckert The sandwich technique with resin-modified glass ionomer cement (RMGIC) has been proposed to relieve the contraction stresses of direct resin composite (RC) restorations. The aim of this study was to evaluate the interfacial adaptation to enamel and dentin of modified Class II open RMGIC/RC sandwich restorations and the influence of different light curing techniques and matrix bands. Forty box-shaped Class II fillings were placed in vivo in premolars scheduled for extraction after one month. In groups I and II, a metal matrix was used; RC was inserted with horizontal (group I) and diagonal (group II) increments and cured with indirect/direct light. Group III was performed as group II, but a transparent matrix was used. Group IV was as group II, but with a separating liner between RMGIC and RC. Group V was a closed sandwich restoration. Interfacial quality was studied using SEM replica technique. Gap-free interfacial adaptation to enamel was observed for RMGIC in 70%, for RC in 70% and to dentin for RMGIC in 81%, for RC in 56%. No significant differences were seen between the experimental groups. At the cervical margins, RMGIC showed significantly better adaptation to enamel than RC, 74% and 42%, respectively. In conclusion, the investigated restorations showed a high percentage of gap-free interfacial adaptation in vivo. Interfacial adaptation to dentin and to cervical enamel was significantly better for RMGIC than for RC. [source] Bond strengths between composite resin and auto cure glass ionomer cement using the co-cure techniqueAUSTRALIAN DENTAL JOURNAL, Issue 2 2006GM Knight Abstract Background: The clinical technique for sandwich restorations prescribes etching initially set auto cure glass ionomer cement (GIC) prior to placing a layer of resin bond to develop a weak mechanical bond between composite resin and GIC. Co-curing a resin modified glass ionomer cement (RMGIC) bond and composite resin to GIC may create a chemical bond and improve the bond strengths between these two materials. Methods: A total of 48 specimens were prepared, 12 in each of four categories. Capsulated GIC was placed into a mould and allowed to set for four minutes, etched for five seconds followed by placement of a resin bond and photo cured for five seconds over which a composite resin was puddled onto the resin bond and photo cured for 10 seconds. Capsulated GIC was placed into a mould and allowed to set for four minutes after which a sample of RMGIC (Riva LC) was prepared using twice the liquid powder ratio and painted over the surface of the set GIC using a micro brush. An increment of composite resin was added over the RMGIC and both materials were photo co-cured for 10 seconds. Capsulated GIC was placed into a mould and RMGIC (Riva LC) that had been prepared using twice the liquid powder was brushed over the GIC (prior to initial set) followed by the placement of a layer of composite resin and photo co-cured for 10 seconds. Capsulated GIC was placed into a mould and RMGIC (Fuji II LC) that had been prepared using twice the liquid powder was brushed over the GIC (prior to initial set) followed by the placement of a layer of composite resin and photo co-cured for 10 seconds. Shear testing of each of the samples was carried out and specimens were examined to determine the nature of the fracture. Selected samples were prepared for SEM investigation to observe the interfaces between the GIC and composite resin. Results: There were significantly lower bond strengths (P < 0.05) amongst samples that had been etched and bonded (2.42MPa) compared to the other samples that had been co-cure bonded with RMGIC (6.48,7.05MPa). There were no significant differences amongst the bond strengths of the samples co-cure bonded with RMGIC. Specimens prepared by the ,etch and bond' technique failed adhesively and co-cured specimens failed cohesively within the GIC. SEM investigation showed chemical bonds between RMGIC bond and GIC and composite resin. Conclusions: The co-cured RMGIC bonding system eliminates several placement steps and produces a significantly stronger chemical bond between GIC and composite resin than the ,etch and bond' technique. RMGIC bond and composite resin may be co-cured to GIC either before or after initial set has occurred. [source] |