Home About us Contact | |||
Autoimmune Neuritis (autoimmune + neuritis)
Kinds of Autoimmune Neuritis Selected AbstractsThe Critical Role of IL-12p40 in Initiating, Enhancing, and Perpetuating Pathogenic Events in Murine Experimental Autoimmune NeuritisBRAIN PATHOLOGY, Issue 4 2002Lei Bao Interleukin 12 (IL-12) is a proinflammatory cytokine with important immunoregulatory activities and is critical in determining the differentiation and generation of Th1 cells. For the present study, we investigated the role of endogenous IL-12 in the pathogenesis of experimental autoimmune neuritis (EAN), which is a CD4+ T-cell mediated autoimmune inflammatory disease of the peripheral nervous system. EAN is used as an animal model for Guillain-Barré syndrome of humans. Here, EAN was established in IL-12 p40 deficient mutant (IL-12 -/- ) C57BL/6 mice by immunization with P0 peptide 180,199, a purified component of peripheral nerve myelin, and Freund's complete adjuvant. In these IL-12 -/- mice the onset of clinical disease was delayed, and the incidence and severity of EAN were significantly reduced compared to that in wild-type mice. The former group's clinical manifestations were associated with less P0-peptide 180,199 induced secretion of interferon-, (IFN-,) by splenocytes in vitro and low production of anti-P0-peptide 180,199 IgG2b antibodies in serum. Fewer IFN-, and TNF-, producing cells, but more cells secreting IL-4, were found in sciatic nerve sections from IL-12 -/- mice, consistent with impaired Th1 functions and response. However, the IL-12 deficiency appeared not to affect P0 peptide 180,199-specific T-cell proliferation. These results indicate that IL-12 has a major role in the initiation, enhancement and perpetuation of pathogenic events in EAN by promoting a Th1 cell-mediated immune response and suppressing the Th2 response. This information augments consideration of IL-12 as a therapeutic target in Guillain-Barré syndrome and other T-cell-mediated autoimmune diseases. [source] Improved outcome of EAN, an animal model of GBS, through amelioration of peripheral and central inflammation by minocyclineJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 2 2009Zhi-Yuan Zhang Abstract Experimental autoimmune neuritis (EAN) is a widely used animal model of the human acute inflammatory demyelinating polyradiculoneuropathy, which is the most common subtype of Guillain-Barré Syndrome. EAN is pathologically characterized by breakdown of the blood-nerve barrier, infiltration of reactive immune cells, local inflammation, demyelination in the peripheral nervous system and mechanical allodynia. Minocycline is known to have neuroprotective and anti-inflammatory effects. Furthermore, relieve of neuropathic pain following minocycline administration was observed in a variety of animal models. Here, we investigated the effects of minocycline on rat EAN. Suppressive treatment with minocycline (50 mg/kg body weight daily immediately after immunization) significantly attenuated the severity and duration of EAN. Macrophage and T-cell infiltration and demyelination in sciatic nerves of EAN rats treated with minocycline were significantly reduced compared to phosphate-buffered saline (PBS)-treated EAN rats. mRNA expressions of matrix metallopeptidase-9, inducible nitric oxide synthase and pro-inflammatory cytokines interleukin-1 , and tumour necrosis factor-, in EAN sciatic nerves were greatly decreased by administration of minocycline as well. Furthermore, minocycline attenuated mechanical allodynia in EAN rats and greatly suppressed spinal microglial activation. All together, our data showed that minocycline could effectively suppress the peripheral and spinal inflammation (immune activation) to improve outcome in EAN rats, which suggests that minocycline may be considered as a potential candidate of pharmacological treatment for autoimmune-mediated neuropathies. [source] Expression of RhoA by inflammatory macrophages and T cells in rat experimental autoimmune neuritisJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 1 2007Zhiren Zhang Abstract RhoA is one of the best-studied members of Rho GTPases. Experimental autoimmune neuritis (EAN), which is characterized by infiltration of T cells and macrophages into the peripheral nervous system, is an autoantigen-specific T-cell-mediated animal model of human Guillain-Barr, Syndrome. In this study, RhoA expression has been investigated in the dorsal/ventral roots of EAN rats by immunohistochemistry. A significant accumulation of RhoA+ cells was observed on Day 12, with a maximum around Day 15, correlating to the clinical severity of EAN. In dorsal/ventral roots of EAN, RhoA+ cells were seen in perivascular areas but also in the parenchyma. Furthermore, double-labelling experiments showed that the major cellular sources of RhoA were reactive macrophages and T cells. In conclusion, this is the first demonstration of the presence of RhoA in the dorsal/ventral roots of EAN. The time courses and cellular sources of RhoA together with the functions of RhoA indicate that RhoA may function to facilitate macrophage and T-cell infiltration in EAN and therefore could be a potential therapeutic target. [source] The Critical Role of IL-12p40 in Initiating, Enhancing, and Perpetuating Pathogenic Events in Murine Experimental Autoimmune NeuritisBRAIN PATHOLOGY, Issue 4 2002Lei Bao Interleukin 12 (IL-12) is a proinflammatory cytokine with important immunoregulatory activities and is critical in determining the differentiation and generation of Th1 cells. For the present study, we investigated the role of endogenous IL-12 in the pathogenesis of experimental autoimmune neuritis (EAN), which is a CD4+ T-cell mediated autoimmune inflammatory disease of the peripheral nervous system. EAN is used as an animal model for Guillain-Barré syndrome of humans. Here, EAN was established in IL-12 p40 deficient mutant (IL-12 -/- ) C57BL/6 mice by immunization with P0 peptide 180,199, a purified component of peripheral nerve myelin, and Freund's complete adjuvant. In these IL-12 -/- mice the onset of clinical disease was delayed, and the incidence and severity of EAN were significantly reduced compared to that in wild-type mice. The former group's clinical manifestations were associated with less P0-peptide 180,199 induced secretion of interferon-, (IFN-,) by splenocytes in vitro and low production of anti-P0-peptide 180,199 IgG2b antibodies in serum. Fewer IFN-, and TNF-, producing cells, but more cells secreting IL-4, were found in sciatic nerve sections from IL-12 -/- mice, consistent with impaired Th1 functions and response. However, the IL-12 deficiency appeared not to affect P0 peptide 180,199-specific T-cell proliferation. These results indicate that IL-12 has a major role in the initiation, enhancement and perpetuation of pathogenic events in EAN by promoting a Th1 cell-mediated immune response and suppressing the Th2 response. This information augments consideration of IL-12 as a therapeutic target in Guillain-Barré syndrome and other T-cell-mediated autoimmune diseases. [source] |