Autoimmune Arthritis (autoimmune + arthritis)

Distribution by Scientific Domains


Selected Abstracts


Active immunization with IL-1 displayed on virus-like particles protects from autoimmune arthritis

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2008
Gunther Spohn
Abstract IL-1 is an important mediator of inflammation and a major cause of tissue damage in rheumatoid arthritis (RA). Therapeutic administration of recombinant IL-1 receptor antagonist (IL-1Ra) is efficacious in reducing clinical symptoms of disease, but suffers from several drawbacks, including the need for frequent administrations of large amounts. Here, we show that immunization of mice with either IL-1, or IL-1, chemically cross-linked to virus-like particles (VLP) of the bacteriophage Q, elicited a rapid and long-lasting autoantibody response. The induced Ab efficiently neutralized the binding of the respective IL-1 molecules to their receptors in vitro and their pro-inflammatory activities in vivo. In the collagen-induced arthritis model, both vaccines strongly protected mice from inflammation and degradation of bone and cartilage. Moreover, immunization with either vaccine showed superior efficacy than daily administrations of high amounts of IL-1Ra. In the T and B cell-independent collagen Ab transfer model, immunization with the IL-1, vaccine strongly protected from arthritis, whereas immunization with the IL-1, vaccine had no effect. Our results suggest that active immunization with IL-1,, and especially IL-1, conjugated to Q, VLP, might become an efficacious and cost-effective new treatment option for RA and other systemic IL-1-dependent inflammatory disorders. [source]


Role of Th17 cells in human autoimmune arthritis

ARTHRITIS & RHEUMATISM, Issue 10 2010
Jan Leipe
Objective To delineate the role of Th17 cells in the pathogenesis of autoimmune arthritides. Methods Th17 cells were analyzed in well-defined homogeneous cohorts of patients with the prototypical autoimmune arthritides rheumatoid arthritis (RA) and psoriatic arthritis (PsA), grouped according to patients who had very early active RA (n = 36; mean disease duration 2.8 months, Disease Activity Score in 28 joints 5.0) and those who had very early active PsA (n = 20; mean disease duration 2.3 months), none of whom had received treatment with glucocorticoids or disease-modifying antirheumatic drugs, as well as patients with established RA (n = 21; mean disease duration 68 months) who were considered either responders or nonresponders to therapy. Groups of healthy individuals and patients with osteoarthritis (a noninflammatory arthritis) were used as control cohorts. Expression of T lineage,specific transcription factors (RORC, T-bet, GATA-3, and FoxP3) and the response of CD4 T cells to Th17 cell,inducing conditions were analyzed in vitro. Results The frequencies of Th17 cells and levels of interleukin-17 strongly correlated with systemic disease activity at both the onset and the progression of RA or PsA. The values were reduced to control levels in patients with treatment-controlled disease activity. Th17 cells were enriched in the joints, and increased frequencies of synovial Th17 cells expressed CCR4 and CCR6, indicative of selective migration of Th17 cells to the joints. The intrinsically elevated expression of RORC, accompanied by biased Th17 cell development, and the resistance of Th17 cells to a natural cytokine antagonist in patients with RA and patients with PsA were suggestive of the underlying molecular mechanisms of uncontrolled Th17 activity in these patients. Conclusion Th17 cells play an important role in inflammation in human autoimmune arthritides, both at the onset and in established disease. [source]


Genetic deficiency of Syk protects mice from autoantibody-induced arthritis

ARTHRITIS & RHEUMATISM, Issue 7 2010
Zoltán Jakus
Objective The Syk tyrosine kinase plays an important role in diverse functions in hematopoietic lineage cells. Although previous in vitro and pharmacologic analyses suggested Syk to be a possible player in the development of autoimmune arthritis, no in vivo genetic studies addressing that issue have yet been reported. The aim of the present study was to test whether genetic deficiency of Syk affects autoantibody-induced experimental arthritis in the K/BxN serum,transfer model. Methods Syk,/, bone marrow chimeras carrying a Syk-deficient hematopoietic system were generated by transplanting Syk,/, fetal liver cells into lethally irradiated wild-type recipients. After complete repopulation of the hematopoietic compartment, autoantibody-mediated arthritis was induced by injection of arthritogenic K/BxN serum. Arthritis development was monitored by macroscopic and microscopic observation of the ankle joints, micro,computed tomography of bone morphology, as well as a joint function assay. Results Genetic deficiency of Syk in the hematopoietic compartment completely blocked the development of all macroscopic and microscopic signs of arthritis. The Syk,/, mutation also prevented the appearance of periarticular bone erosions. Finally, Syk,/, bone marrow chimeras were completely protected from arthritis-induced loss of articular function. Conclusion Our results indicate that Syk is critically involved in the development of all clinically relevant aspects of autoantibody-mediated K/BxN serum,transfer arthritis in experimental mice. These results provide the first in vivo genetic evidence of the role of Syk in the development of autoimmune arthritis. [source]


Breaking T cell tolerance against self type II collagen in HLA,DR4,transgenic mice and development of autoimmune arthritis

ARTHRITIS & RHEUMATISM, Issue 7 2010
Tsvetelina Batsalova
Objective To establish a new animal model in DRB1*0401 (DR4),transgenic mice in which T cell tolerance to self type II collagen (CII) can be broken and allow for the development of autoimmune arthritis, to investigate the role of posttranslational modifications of the CII259,273 epitope in the induction and breaking of tolerance of DR4-restricted T cells, and to characterize DR4-restricted T cell recognition of the immunodominant CII259,273 epitope. Methods DR4-transgenic mice expressing either the entire human CII protein (HuCII) or only the immunodominant T cell epitope of heterologous CII (MMC) in joint cartilage were established on different genetic backgrounds, and susceptibility to collagen-induced arthritis (CIA) was tested. Results HuCII mice displayed stronger T cell tolerance to heterologous CII than did MMC mice. On the B10 background, arthritis developed only in MMC mice with a defective oxidative burst. However, MMC mice on the C3H background were susceptible to arthritis also with a functional oxidative burst. Significant recall responses in tolerized mice were detected only against the nonglycosylated CII259,273 epitope. Recognition of the CII259,273 epitope was heterogeneous, but the majority of T cells in DR4 mice specifically recognized the nonglycosylated side chain of lysine at position 264. Conclusion It is possible to break tolerance to self CII and induce arthritis in DR4 mice. However, arthritis susceptibility is tightly controlled by the genetic background and by the source of the transgenic element for expressing the heterologous CII peptide as a self CII protein in the joint. In contrast to CIA in Aq -expressing mice, the nonglycosylated CII259,273 epitope is clearly immunodominant in both tolerized and nontolerized DR4 mice. [source]


A novel heat-shock protein coinducer boosts stress protein Hsp70 to activate T cell regulation of inflammation in autoimmune arthritis

ARTHRITIS & RHEUMATISM, Issue 4 2010
Lotte Wieten
Objective Stress proteins, such as members of the heat-shock protein (HSP) family, are up-regulated by cells in inflamed tissue and can be viewed functionally as "biomarkers" for the immune system to monitor inflammation. Exogenous administration of stress proteins has induced immunoregulation in various models of inflammation and has also been shown to be effective in clinical trials in humans. This study was undertaken to test the hypothesis that boosting of endogenous HSP expression can restore effective immunoregulation through T cells specific for stress proteins. Methods Stress protein expression was manipulated in vivo and in vitro with a food component (carvacrol), and immune recognition of stress proteins was studied. Results Carvacrol, a major compound in the oil of many Origanum species, had a notable capacity to coinduce cellular Hsp70 expression in vitro and, upon intragastric administration, in Peyer's patches of mice in vivo. As a consequence, carvacrol specifically promoted T cell recognition of endogenous Hsp70, as demonstrated in vitro by the activation of an Hsp70-specific T cell hybridoma and in vivo by amplified T cell responses to Hsp70. Carvacrol administration also increased the number of CD4+CD25+FoxP3+ T cells, systemically in the spleen and locally in the joint, and almost completely suppressed proteoglycan-induced experimental arthritis. Furthermore, protection against arthritis could be transferred with T cells isolated from carvacrol-fed mice. Conclusion These findings illustrate that a food component can boost protective T cell responses to a self stress protein and down-regulate inflammatory disease, i.e., that the immune system can respond to diet. [source]


Interleukin-23 promotes Th17 differentiation by inhibiting T-bet and FoxP3 and is required for elevation of interleukin-22, but not interleukin-21, in autoimmune experimental arthritis

ARTHRITIS & RHEUMATISM, Issue 4 2010
Adriana M. C. Mus
Objective To examine the role of interleukin-23 (IL-23) in subgroup polarization of IL-17A,positive and/or interferon-, (IFN,),positive T cells in autoimmune disease,prone DBA/1 mice with and without collagen-induced arthritis. Methods A magnetic-activated cell sorting system was used to isolate CD4+ T cells from the spleen of naive and type II collagen (CII),immunized DBA/1 mice. These CD4+ T cells were stimulated in vitro under Th0, Th1, or different Th17 culture conditions. Intracellular staining for IL-17A and IFN, was evaluated by flow cytometry. In addition, Th17 cytokines and T helper,specific transcription factors were analyzed by enzyme-linked immunosorbent assay and/or quantitative polymerase chain reaction. Results In CD4+ T cells from naive DBA/1 mice, IL-23 alone hardly induced retinoic acid,related orphan receptor ,t (ROR,t), Th17 polarization, and Th17 cytokines, but it inhibited T-bet expression. In contrast, transforming growth factor ,1 (TGF,1)/IL-6 was a potent inducer of ROR,t, ROR,, IL-17A, IL-17F, IL-21, and FoxP3 in these cells. In contrast to TGF,1/IL-6, IL-23 was critical for the induction of IL-22 in CD4+ T cells from both naive and CII-immunized DBA/1 mice. Consistent with these findings, IL-23 showed a more pronounced induction of the IL-17A+IFN,, subset in CD4+ T cells from CII-immunized mice. However, in CD4+ T cells from naive mice, IL-23 significantly increased the TGF,1/IL-6,induced Th17 polarization, including elevated levels of IL-17A and IL-17F and decreased expression of T-bet and FoxP3. Of note, the IL-23,induced increase in IL-17A and IL-17F levels was prevented in T-bet,deficient mice. Conclusion IL-23 promotes Th17 differentiation by inhibiting T-bet and FoxP3 and is required for elevation of IL-22, but not IL-21, levels in autoimmune arthritis. These data indicate different mechanisms for IL-23 and TGF,1/IL-6 at the transcription factor level during Th17 differentiation in autoimmune experimental arthritis. [source]


Gamma/delta T cells are the predominant source of interleukin-17 in affected joints in collagen-induced arthritis, but not in rheumatoid arthritis

ARTHRITIS & RHEUMATISM, Issue 8 2009
Yoshinaga Ito
Objective Although interleukin-17 (IL-17),producing ,/, T cells were reported to play pathogenic roles in collagen-induced arthritis (CIA), their characteristics remain unknown. The aim of this study was to clarify whether ,/, T cells or CD4+ T cells are the predominant IL-17,producing cells, and to determine what stimulates ,/, T cells to secret IL-17 in mice with CIA. The involvement of IL-17,producing ,/, T cells in SKG mice with autoimmune arthritis and patients with rheumatoid arthritis (RA) was also investigated. Methods IL-17,producing cells in the affected joints of mice with CIA were counted by intracellular cytokine staining during 6 distinct disease phases, and these cells were stimulated with various combinations of cytokines or specific antigens to determine the signaling requirements. Similar studies were performed using SKG mice with arthritis and patients with RA. Results Gamma/delta T cells were the predominant population in IL-17,producing cells in the swollen joints of mice with CIA, and the absolute numbers of these cells increased in parallel with disease activity. IL-17,producing ,/, T cells expressed CC chemokine receptor 6, were maintained by IL-23 but not by type II collagen in vitro, and were induced antigen independently in vivo. Furthermore, IL-17 production by ,/, T cells was induced by IL-1, plus IL-23 independently of T cell receptor. In contrast to what was observed in mice with CIA, IL-17,producing ,/, T cells were nearly absent in the affected joints of SKG mice and patients with RA, and Th1 cells were predominant in the joints of patients with RA. Conclusion Gamma/delta T cells were antigen independently stimulated by inflammation at affected joints and produced enhanced amounts of IL-17 to exacerbate arthritis in mice with CIA but not in SKG mice with arthritis or patients with RA. [source]


Transgenic disruption of glucocorticoid signaling in mature osteoblasts and osteocytes attenuates K/BxN mouse serum,induced arthritis in vivo

ARTHRITIS & RHEUMATISM, Issue 7 2009
Frank Buttgereit
Objective Endogenous glucocorticoids (GCs) modulate numerous biologic systems involved in the initiation and maintenance of arthritis. Bone cells play a critical role in the progression of arthritis, and some of the effects of GCs on inflammation may be mediated via these cells. The aim of this study was to investigate the impact of osteoblast-targeted disruption of GC signaling on joint inflammation, cartilage damage, and bone metabolism in the K/BxN mouse serum transfer model of autoimmune arthritis. Methods Intracellular GC signaling was disrupted in osteoblasts through transgenic overexpression of 11,-hydroxysteroid dehydrogenase type 2 under the control of a type I collagen promoter. Arthritis was induced in 5-week-old male transgenic mice and their wild-type (WT) littermates, and paw swelling was assessed daily until the mice were killed. The mice were examined by histology, histomorphometry, and microfocal computed tomography, and serum was analyzed for cytokines, adrenocorticotropic hormone, and corticosterone. Results Acute arthritis developed in both transgenic and WT mice treated with K/BxN mouse serum. However, the arthritis and local inflammatory activity were significantly attenuated in transgenic mice, as judged by clinical and histologic indices of inflammation and cartilage damage. Bone turnover and bone volume remained unchanged in arthritic transgenic mice, while WT mice exhibited stimulated bone resorption, suppressed osteoblast activity, and significantly reduced bone volume, compatible with the known effects of active inflammation on bone. Circulating levels of proinflammatory cytokines tended to be lower in arthritic transgenic mice than in control transgenic mice. Conclusion Disruption of GC signaling in osteoblasts significantly attenuates K/BxN mouse serum,induced autoimmune arthritis in mice. These data suggest that osteoblasts modulate the immune-mediated inflammatory response via a GC-dependent pathway. [source]


Intervention of an inflammation amplifier, triggering receptor expressed on myeloid cells 1, for treatment of autoimmune arthritis

ARTHRITIS & RHEUMATISM, Issue 6 2009
Yousuke Murakami
Objective Triggering receptor expressed on myeloid cells 1 (TREM-1) is inducible on monocyte/macrophages and neutrophils and accelerates tissue destruction by propagating inflammatory responses in disease related to bacterial infections. Its blockade rescues the hosts in murine models of sepsis, to clear the bacteria without impairing the host defense. The aim of this study was to investigate the involvement of TREM-1 in an autoimmune, noninfectious disease. Methods Synovial tissue specimens from the joints of patients with rheumatoid arthritis (RA) and the joints of mice with collagen-induced arthritis (CIA) were examined for TREM-1 expression, using flow cytometric analysis. Expression of TREM-1 on macrophages was induced by lipopolysaccharide, with or without a cyclooxygenase inhibitor. Rheumatoid synovial cells were stimulated with agonistic anti,TREM-1 antibodies. Recombinant adenovirus encoding the extracellular domain of TREM-1 fused with IgG-Fc (AxCATREM-1 Ig) or synthetic TREM-1 antagonistic peptides were injected to treat CIA, and the clinical manifestations of the antigen-specific T cell and B cell responses were evaluated. Results TREM-1 was expressed on CD14+ cells in rheumatoid synovial tissue and synovial macrophages from mice with CIA. Unlike murine macrophages, human monocyte/macrophages did not depend on prostaglandin E2 for up-regulation of TREM-1. Agonistic anti,TREM-1 antibodies promoted tumor necrosis factor , production from rheumatoid synovial cells. Blockade of TREM-1 using AxCATREM-1 Ig and antagonistic peptides ameliorated CIA without affecting the serum levels of anti,type II collagen antibodies or the proliferative responses of splenocytes to type II collagen. Conclusion TREM-1 ligation contributes to the pathology of autoimmune arthritis. The results of this study implied that blockade of TREM-1 could be a new approach to rheumatic diseases that is safer than the presently available immunosuppressive treatments. [source]


Autoimmune regulator controls T cell help for pathogenetic autoantibody production in collagen-induced arthritis

ARTHRITIS & RHEUMATISM, Issue 6 2009
Ian K. Campbell
Objective Autoimmune regulator (Aire) promotes the ectopic expression of tissue-restricted antigens in medullary thymic epithelial cells (mTECs), leading to negative selection of autoreactive T cells. This study was undertaken to determine whether loss of central tolerance renders Aire-deficient (Aire,/,) mice more susceptible to the induction of autoimmune arthritis. Methods Medullary TECs were isolated from Aire,/, and wild-type C57BL/6 mice for gene expression analysis. Collagen-induced arthritis (CIA) was elicited by injection of chick type II collagen (CII) in adjuvant. Cellular and humoral immune responses to CII were evaluated. Chimeric mice were created by reconstituting lymphocyte-deficient mice with either Aire,/, or wild-type CD4 T cells and wild-type B cells. Results Wild-type, but not Aire,/,, mTECs expressed the CII gene Col2a1. Aire,/, mice developed more rapid and severe CIA, showing elevated serum anti-CII IgG levels, with earlier switching to arthritogenic IgG subclasses. No evidence was found of enhanced T cell responsiveness to CII in Aire,/, mice; however, Aire,/, CD4 T cells were more efficient at stimulating wild-type B cells to produce anti-CII IgG following immunization of chimeric mice with CII. Conclusion Our findings indicate that Aire-dependent expression of CII occurs in mTECs, implying that there is central tolerance to self antigens found in articular cartilage. Reduced central tolerance to CII in Aire,/, mice manifests as increased CD4 T cell help to B cells for cross-reactive autoantibody production and enhanced CIA. Aire and central tolerance help prevent cross-reactive autoimmune responses to CII initiated by environmental stimuli and limit spontaneous autoimmunity. [source]


Tolerization with Hsp65 induces protection against adjuvant-induced arthritis by modulating the antigen-directed interferon-,, interleukin-17, and antibody responses

ARTHRITIS & RHEUMATISM, Issue 1 2009
Shailesh R. Satpute
Objective Pretreatment of Lewis rats with soluble mycobacterial Hsp65 affords protection against subsequent adjuvant-induced arthritis (AIA). This study was aimed at unraveling the mechanisms underlying mycobacterial Hsp65,induced protection against arthritis, using contemporary parameters of immunity. Methods Lewis rats were given 3 intraperitoneal injections of mycobacterial Hsp65 in solution prior to the initiation of AIA with heat-killed Mycobacterium tuberculosis. Thereafter, mycobacterial Hsp65,specific T cell proliferative, cytokine, and antibody responses were tested in tolerized rats. The roles of anergy and the indoleamine 2,3 dioxygenase (IDO),tryptophan pathway in tolerance induction were assessed, and the frequency and suppressive function of CD4+FoxP3+ Treg cells were monitored. Also tested was the effect of mycobacterial Hsp65 tolerization on T cell responses to AIA-related mycobacterial Hsp70, mycobacterial Hsp10, and rat Hsp65. Results The AIA-protective effect of mycobacterial Hsp65,induced tolerance was associated with a significantly reduced T cell proliferative response to mycobacterial Hsp65, which was reversed by interleukin-2 (IL-2), indicating anergy induction. The production of interferon-, (but not IL-4/IL-10) was increased, with concurrent down-regulation of IL-17 expression by mycobacterial Hsp65,primed T cells. Neither the frequency nor the suppressive activity of CD4+FoxP3+ T cells changed following tolerization, but the serum level of anti,mycobacterial Hsp65 antibodies was increased. However, no evidence was observed for a role of IDO or cross-tolerance to mycobacterial Hsp70, mycobacterial Hsp10, or rat Hsp65. Conclusion Tolerization with soluble mycobacterial Hsp65 leads to suppression of IL-17, anergy induction, and enhanced production of anti,mycobacterial Hsp65 antibodies, which play a role in protection against AIA. These results are relevant to the development of effective immunotherapeutic approaches for autoimmune arthritis. [source]


Peptide-induced suppression of collagen-induced arthritis in HLA,DR1 transgenic mice

ARTHRITIS & RHEUMATISM, Issue 12 2002
Linda K. Myers
Objective To identify peptides capable of altering the immune response to type II collagen (CII) in the context of HLA,DR. Methods Immunizing mice transgenic for the human HLA,DRB1*0101 immune response gene with CII elicits an arthritis (collagen-induced arthritis [CIA]) that resembles rheumatoid arthritis. We have previously identified an immunodominant determinant of CII, CII (263,270), recognized by T cells in the context of DR1. To produce synthetic peptides with the potential of disrupting the DR1-restricted immune response, synthetic analog peptides were developed that contain site-directed substitutions in critical positions. These peptides were used to treat CIA in DR1 transgenic mice. Results An analog peptide, CII (256,276, N263, D266), that inhibited T cell responses in vitro, was identified. When DR1 mice were coimmunized with CII and CII (256,276, N263, D266), the incidence and severity of arthritis were greatly reduced, as was the antibody response to CII. Moreover, CII (256,276, N263, D266) was effective in down-regulating the immune responses to CII and arthritis, even when administered 2 weeks following immunization with CII. Spleen and lymph node cells from CII-immunized mice cultured with CII (256,276, N263, D266) in vitro produced increased amounts of interleukin-4 (IL-4) compared with cells cultured with the wild-type peptide, CII (256,276). Furthermore, CII (256,276, N263, D266) was incapable of preventing arthritis in DR1 IL-4,/, mice (genetically deficient in IL-4). Conclusion These data establish that CII (256,276, N263, D266) is a potent suppressor of the DR-mediated immune response to CII. Its effect is mediated, at least in part, by IL-4. These experiments represent the first description of an analog peptide of CII recognized by T cells in the context of a human major histocompatibility complex molecule that can suppress autoimmune arthritis. [source]


Reduced incidence and severity of experimental autoimmune arthritis in mice expressing catalytically inactive A disintegrin and metalloproteinase 8 (ADAM8)

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 2 2009
M. D. Zack
Summary A disintegrin and metalloproteinase 8 (ADAM8), a catalytically active member of the ADAMs family of enzymes, is expressed primarily on immune cells and thus probably involved in inflammatory responses. ADAM8 is also produced by chondrocytes, and recombinant ADAM8 can induce cartilage catabolism. We therefore decided to test the role of ADAM8 in autoimmune inflammatory arthritis using transgenic mice expressing catalytically inactive ADAM8. Transgenic DBA/1J mice expressing an inactivating point mutation in the ADAM8 gene to change Glu330 to Gln330 (ADAM8EQ) were generated to evaluate the proteolytic function of ADAM8 in an lipopolysaccharide-synchronized collagen-induced arthritis (LPS-CIA) model of autoimmune arthritis. The systemic inflammatory reaction to LPS was also evaluated in these mice. Expression profiling of paw joints from wild-type mice revealed that ADAM8 mRNA levels increased at the onset of clinical arthritis and correlated well with cellular macrophage markers. When subjected to LPS-CIA, ADAM8EQ mice demonstrated decreased incidence and severity of clinical arthritis compared to wild-type mice. Histological examination of paw joints from ADAM8EQ mice confirmed marked attenuation of synovial inflammation, cartilage degradation and bone resorption when compared to wild-type mice. However, transgenic mice and wild-type mice responded similarly to LPS-induced systemic inflammation with regard to mortality, organ weights, neutrophil sequestration and serum cytokine/chemokine production. We conclude that ADAM8 proteolytic activity plays a key role in the development of experimental arthritis and may thus be an attractive target for the treatment of arthritic disorders while minimizing risk of immunocompromise. [source]