Home About us Contact | |||
Runoff Generation (runoff + generation)
Terms modified by Runoff Generation Selected AbstractsA Paradigm Shift in Hydrology: Storage Thresholds Across Scales Influence Catchment Runoff GenerationGEOGRAPHY COMPASS (ELECTRONIC), Issue 7 2010Christopher Spence A paradigm shift is occurring in the science surrounding runoff generation processes. Results of recent field investigations in landscapes and during periods previously unobservable are shaping new ideas on how runoff is generated and transferred from the hillslope to the catchment outlet. The previous paradigm saw runoff generation and contributing area variability as a continuum. The new paradigm is based not on continual storage satisfaction and runoff generation but threshold-mediated, connectivity-controlled processes dictated by heterogeneity in the catchment. This review focuses on the body of literature summarizing research on storage, storage thresholds and runoff generation, particularly over the last several years during which this paradigm shift has occurred. Storage thresholds that control the release of water exist at scales as small as the soil matrix and as large as the catchment. Hysteresis in storage,runoff relationships at all scales manifest because of these thresholds. Because storage thresholds at a range of scales have now been recognized as important, connectivity has become an important concept crucial to understanding how water is transferred through a catchment. This new paradigm requires basins to be instrumented within the context of a water budget investigation, with measurements taken within key catchment units, in order to be successful. New model approaches that incorporate connectivity are required to address the findings of field hydrologists. These steps are crucial if our community wishes to adopt the holisitic view of the catchment necessary to answer the questions posed to us by the society. [source] RUNOFF PRODUCTION AND EROSION PROCESSES ON A DEHESA IN WESTERN SPAIN,GEOGRAPHICAL REVIEW, Issue 3 2002ANTONIO CEBALLOS ABSTRACT. Runoff generation and soil erosion were investigated at the Guadalperalón experimental watershed (western Spain), within the land-use system known as dehesa, or open, managed evergreen forests. Season and type of surface were found to control runoff and soil-loss rates. Five soil units were selected as representative of surface types found in the study area: hillslope grass, bottom grass, tree cover, sheep trails, and shrub cover. Measurements were made in various conditions with simulated rainfall to gain an idea of the annual variation in runoff and soil loss. Important seasonal differences were noted due to surface cover and moisture content of soil, but erosion rates were determined primarily by runoff. Surfaces covered with grass and shrubs always showed less erosion; surfaces covered with holm oaks showed higher runoff rates, due to the hydrophobic character of the soils. Concentrations of runoff sediment during the simulations confirmed that erosion rates at the study site depended directly on the sediment available on the soil surface. [source] Runoff generation from logged and burnt convergent hillslopes: rainfall simulation and modellingHYDROLOGICAL PROCESSES, Issue 5 2004Patrick N. J. Lane Abstract This paper reports results from field experiments and hydrological modelling on the dynamics of runoff generation in highly convergent parts of the landscape in a logged and burnt eucalypt forest in south-eastern Victoria, Australia. Large-scale rainfall simulation experiments were conducted to explore runoff generating mechanisms from harvested areas, and to assess the effectiveness of standard water quality protective measures, here a disturbed filter strip, in preventing accession of sediment to near-stream areas. We then examined the likely effects of varying antecedent moisture conditions on surface and subsurface runoff generating mechanisms. Very small volumes of surface runoff were generated only at very high rainfall intensity rates that exceeded a 100 year recurrence interval event during the simulated experiments. There was little or no identifiable impact of either compaction from logging operations or fire-induced hydrophobicity on surface infiltration or generation of surface runoff. Measured soil hydraulic properties and soil depths explained the paucity of surface runoff, and the dominance of subsurface storm flow as the prime runoff generating mechanism. Deep lateral subsurface flow was observed from the cut-face of a fire access track and into a streamhead downslope of the experimental plots. Water balance modelling using Topog_Dynamic indicated the conditions under which saturated overland flow in this environment could be generated are rare, but that care should be taken in siting of roads and tracks in lower parts of convergent landscapes. Copyright © 2004 John Wiley & Sons, Ltd. [source] Runoff generation and implications for river basin modelling special issueHYDROLOGICAL PROCESSES, Issue 2 2003Stefan Uhlenbrook No abstract is available for this article. [source] Runoff generation and routing on artificial slopes in a Mediterranean,continental environment: the Teruel coalfield, SpainHYDROLOGICAL PROCESSES, Issue 3 2002José-Manuel Nicolau Abstract The aim of this study was to identify the mechanisms of runoff generation and routing and their controlling factors at the hillslope scale, on artificial slopes derived from surface coal mining reclamation in a Mediterranean,continental area. Rainfall and runoff at interrill and microcatchment scales were recorded for a year on two slopes with different substrata: topsoil cover and overburden cover. Runoff coefficient and runoff routing from interrill areas to microcatchment outlets were higher in the overburden substratum than in topsoil, and greater in the most developed rill network. Rainfall volume is the major parameter responsible for runoff response on overburden, suggesting that this substratum is very impermeable,at least during the main rainfall periods of the year (late spring and autumn) when the soil surface is sealed. In such conditions, most rainfall input is converted into runoff, regardless of its intensity. Results from artificial rainfall experiments, conducted 3 and 7 years after seeding, confirm the low infiltration capacity of overburden when sealed. The hydrological response shows great seasonal variability on the overburden slope in accordance with soil surface changes over the year. Rainfall volume and intensities (I30, I60) explain runoff at the interrill scale on the topsoil slope, where rainfall experiments demonstrated a typical Hortonian infiltration curve. However, no correlation was found at the microcatchment level, probably because of the loss of functionality of the only rill as ecological succession proceeded. The runoff generation mechanism on the topsoil slope is more homogeneous throughout the year. Runoff connectivity, defined as the ratio between runoff rates recorded at the rill network scale and those recorded at the interrill area scale in every rainfall event, was also greater on the rilled overburden slope, and in the most developed rill network. The dense rill networks of the overburden slope guarantee very effective runoff drainage, regardless of rainfall magnitude. Rills drain overland flow from interrill-sealed areas, reducing the opportunity of reinfiltration in areas not affected by siltation. Runoff generation and routing on topsoil slopes are controlled by grass cover and soil moisture content, whereas on overburden slopes rill network density and soil moisture content are the main controlling factors. Copyright © 2002 John Wiley & Sons, Ltd. [source] Persistence of road runoff generation in a logged catchment in Peninsular MalaysiaEARTH SURFACE PROCESSES AND LANDFORMS, Issue 13 2007Alan D. Ziegler Abstract Measurements of saturated hydraulic conductivity (Ks) and diagnostic model simulations show that all types of logging road/trail in the 14·4 ha Bukit Tarek Experimental Catchment 3 (BTEC3) generate substantial Horton overland flow (HOF) during most storms, regardless of design and level of trafficking. Near-surface Ks(0,0·05 m) on the main logging road, skid trails and newly constructed logging terraces was less than 1, 2 and 34 mm h,1, respectively. Near-surface Ks on an abandoned skid trail in an adjacent basin was higher (62 mm h,1), owing to the development of a thin organic-rich layer on the running surface over the past 40 years. Saturated hydraulic conductivity measured at 0·25 m below the surface of all roads was not different (all <6 mm h,1) and corresponded to the Ks of the adjacent hillslope subsoil, as most roads were excavated into the regolith more than 0·5,1 m. After 40 years, only limited recovery in near-surface Ks occurred on the abandoned skid trail. This road generated HOF after the storage capacity of the upper near-surface layer was exceeded during events larger than about 20 mm. Thus, excavation into low- Ks substrate had a greater influence on the persistence of surface runoff production than did surface compaction by machinery during construction and subsequent use during logging operations. Overland flow on BTEC3 roads was also augmented by the interception of shallow subsurface flow traveling along the soil,saprolite/bedrock interface and return flow emerging from the cutbank through shallow biogenic pipes. The most feasible strategy for reducing long-term road-related impacts in BTEC3 is limiting the depth of excavation and designing a more efficient road network, including minimizing the length and connectivity of roads and skid trails. Copyright © 2007 John Wiley & Sons, Ltd. [source] Soil detachment and transport on field- and laboratory-scale interrill areas: erosion processes and the size-selectivity of eroded sedimentEARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2006O. Malam Issa Abstract Field- and laboratory-scale rainfall simulation experiments were carried out in an investigation of the temporal variability of erosion processes on interrill areas, and the effects of such variation upon sediment size characteristics. Poorly aggregated sandy soils from the semi-arid environment of Senegal, West Africa, were used on both a 40 m2 field plot and a 0·25 m2 laboratory plot; rainfall intensity for all experiments was 70 mm h,1 with a duration of 1 to 2 hours. Time-series measurements were made of the quantity and the size distribution of eroded material: these permitted an estimate of the changing temporal balance between the main erosion processes (splash and wash). Results from both spatial scales showed a similar temporal pattern of runoff generation and sediment concentration. For both spatial scales, the dominant erosional process was detachment by raindrops; this resulted in a dynamic evolution of the soil surface under raindrop impact, with the rapid formation of a sieving crust followed by an erosion crust. However, a clear difference was observed between the two scales regarding the size of particles detached by both splash and wash. While all measured values were lower than the mean weight diameter (MWD) value of the original soil (mean 0·32 mm), demonstrating the size-selective nature of wash and splash processes, the MWD values of washed and splashed particles at the field scale ranged from 0·08 to 0·16 mm and from 0·12 to 0·30 mm respectively, whereas the MWD values of washed and splashed particles at the laboratory scale ranged from 0·13 to 0·29 mm and from 0·21 to 0·32 mm respectively. Thus only at the field scale were the soil particles detached by splash notably coarser than those transported by wash. This suggests a transport-limited erosion process at the field scale. Differences were also observed between the dynamics of the soil loss by wash at the two scales, since results showed wider scatter in the field compared to the laboratory experiments. This scatter is probably related to the change in soil surface characteristics due to the size-selectivity of the erosion processes at this spatial scale. Copyright © 2006 John Wiley & Sons, Ltd. [source] Modelling variable source area dynamics in a CEAP watershedECOHYDROLOGY, Issue 3 2009Helen E. Dahlke Abstract In the Northeast US, saturation excess is the most dominant runoff process and locations of runoff source areas, typically called variable source areas (VSAs), are determined by the available soil water storage and the landscape topographic position. To predict runoff generated from VSAs some water quality models use the Soil Conservation Service Curve Number equation (SCS-CN), which assumes a constant initial abstraction of rainfall is retained by the watershed prior to the beginning of runoff. We apply a VSA interpretation of the SCS-CN runoff equation that allows the initial abstraction to vary with antecedent moisture conditions. We couple this modified SCS-CN approach with a semi-distributed water balance model to predict runoff, and distribute predictions using a soil topographic index for the Town Brook watershed in the Catskill Mountains of New York State. The accuracy of predicted VSA extents using both the original and the modified SCS-CN equation were evaluated for 14 rainfall-runoff events through a comparison with average water table depths measured at 33 locations in Town Brook from March,September 2004. The modified SCS-CN equation captured VSA dynamics more accurately than the original equation. However, during events with high antecedent rainfall VSA dynamics were still under-predicted suggesting that VSA runoff is not captured solely by knowledge of the soil water deficit. Considering the importance of correctly predicting runoff generation and pollutant source areas in the landscape, the results of this study demonstrate the feasibility of integrating VSA hydrology into water quality models to reduce non-point source pollution. Copyright © 2009 John Wiley & Sons, Ltd. [source] A Paradigm Shift in Hydrology: Storage Thresholds Across Scales Influence Catchment Runoff GenerationGEOGRAPHY COMPASS (ELECTRONIC), Issue 7 2010Christopher Spence A paradigm shift is occurring in the science surrounding runoff generation processes. Results of recent field investigations in landscapes and during periods previously unobservable are shaping new ideas on how runoff is generated and transferred from the hillslope to the catchment outlet. The previous paradigm saw runoff generation and contributing area variability as a continuum. The new paradigm is based not on continual storage satisfaction and runoff generation but threshold-mediated, connectivity-controlled processes dictated by heterogeneity in the catchment. This review focuses on the body of literature summarizing research on storage, storage thresholds and runoff generation, particularly over the last several years during which this paradigm shift has occurred. Storage thresholds that control the release of water exist at scales as small as the soil matrix and as large as the catchment. Hysteresis in storage,runoff relationships at all scales manifest because of these thresholds. Because storage thresholds at a range of scales have now been recognized as important, connectivity has become an important concept crucial to understanding how water is transferred through a catchment. This new paradigm requires basins to be instrumented within the context of a water budget investigation, with measurements taken within key catchment units, in order to be successful. New model approaches that incorporate connectivity are required to address the findings of field hydrologists. These steps are crucial if our community wishes to adopt the holisitic view of the catchment necessary to answer the questions posed to us by the society. [source] Storage dynamics and streamflow in a catchment with a variable contributing areaHYDROLOGICAL PROCESSES, Issue 16 2010C. Spence Abstract Storage heterogeneity effects on runoff generation have been well documented at the hillslope or plot scale. However, diversity across catchments can increase the range of storage conditions. Upscaling the influence of small-scale storage on streamflow across the usually more heterogeneous environment of the catchment has been difficult. The objective of this study was to observe the distribution of storage in a heterogeneous catchment and evaluate its significance and potential influence on streamflow. The study was conducted in the subarctic Canadian Shield: a region with extensive bedrock outcrops, shallow predominantly organic soils, discontinuous permafrost and numerous water bodies. Even when summer runoff was generated from bedrock hillslopes with small storage capacities, intermediary locations with large storage capacities, particularly headwater lakes, prevented water from transmitting to higher order streams. The topographic bounds of the basin thus constituted the maximum potential contributing area to streamflow and rarely the actual area. Topographic basin storage had little relation to basin streamflow, but hydrologically connected storage exhibited a strong hysteretic relationship with streamflow. This relationship defines the form of catchment function such that the basin can be defined by a series of storing and contributing curves comparable with the wetting and drying curves used in relating tension and hydraulic conductivity to water content in unsaturated soils. These curves may prove useful for catchment classification and elucidating predominant hydrological processes. Copyright © 2009 John Wiley & Sons, Ltd and Her Majesty the Queen in right of Canada. [source] Modified passive capillary samplers for collecting samples of snowmelt infiltration for stable isotope analysis in remote, seasonally inaccessible watersheds 1: laboratory evaluationHYDROLOGICAL PROCESSES, Issue 7 2010Marty D. Frisbee Abstract Snowmelt is the most significant source of runoff generation and recharge in many of the mountainous watersheds worldwide and this is especially true in the southwestern United States. Yet, the isotopic and geochemical composition of the soil,meltwater endmember remains poorly constrained. Using the isotopic compositions of snow and snowmelt runoff samples taken from the landscape surface as proxies for soil,meltwater endmembers is problematic since they are typically not representative of the actual composition of soil meltwater. Furthermore, the applicability of current methodologies to collect the isotopic composition of meltwater is limited because of the remote and often seasonally inaccessible nature of the terrain where snowpacks develop. Therefore, a robust methodology requiring little maintenance or monitoring is desirable. A lab experiment was conducted to determine the suitability of using a modified passive capillary sampler (M-PCAPS) design to collect snowmelt infiltration for isotopic analysis. Passive capillary samplers are constructed from fiberglass wicks that can be installed in the soil to sample vadose-zone waters under a wide range of matric potentials and require little maintenance. Results from this lab experiment indicate that the wicking process associated with M-PCAPS does not fractionate water but certain precautions are necessary to prevent exchange between the wick and the atmosphere. In this experiment, M-PCAPS effectively tracked the changing isotopic composition of a soil reservoir undergoing evaporation. Therefore, M-PCAPS provide a robust methodology to sample the isotopic composition of snowmelt infiltration in remote watersheds and similar applications. Copyright © 2009 John Wiley & Sons, Ltd. [source] An overview of the field and modelling studies on the effects of forest devastation on flooding and environmental issuesHYDROLOGICAL PROCESSES, Issue 5 2010Yuichi Onda Abstract Intensive field observations as well as monitoring of discharge, water quality, and soil erosion have been conducted in forest plantations in order to identify the effects of forest cover and management practices on runoff generation, sediment transport, and downstream environmental issues. Five experimental catchments, each with rather uniform lithology, were established in both managed and unmanaged plantations of Japanese cypress and cedar, as well as broadleaf forests. Field monitoring was conducted from sub-plots (e.g. splash cups) to small hillslope plots (0·5 × 2 m) to large hillslope-scale plots to first order streams (0·1,4 ha) and finally to larger catchments (>4 ha) in a nested structure. Remote sensing techniques were employed to identify broad scale forest stand and soil surface conditions. As part of this integrated study, these field-based monitoring and remote sensing techniques provide information for modelling runoff generation and developing adaptive management schemes with respect to catchment-scale water resources. Copyright © 2010 John Wiley & Sons, Ltd. [source] Towards a simple dynamic process conceptualization in rainfall,runoff models using multi-criteria calibration and tracers in temperate, upland catchmentsHYDROLOGICAL PROCESSES, Issue 3 2010C. Birkel Abstract Empirically based understanding of streamflow generation dynamics in a montane headwater catchment formed the basis for the development of simple, low-parameterized, rainfall,runoff models. This study was based in the Girnock catchment in the Cairngorm Mountains of Scotland, where runoff generation is dominated by overland flow from peaty soils in valley bottom areas that are characterized by dynamic expansion and contraction of saturation zones. A stepwise procedure was used to select the level of model complexity that could be supported by field data. This facilitated the assessment of the way the dynamic process representation improved model performance. Model performance was evaluated using a multi-criteria calibration procedure which applied a time series of hydrochemical tracers as an additional objective function. Flow simulations comparing a static against the dynamic saturation area model (SAM) substantially improved several evaluation criteria. Multi-criteria evaluation using ensembles of performance measures provided a much more comprehensive assessment of the model performance than single efficiency statistics, which alone, could be misleading. Simulation of conservative source area tracers (Gran alkalinity) as part of the calibration procedure showed that a simple two-storage model is the minimum complexity needed to capture the dominant processes governing catchment response. Additionally, calibration was improved by the integration of tracers into the flow model, which constrained model uncertainty and improved the hydrodynamics of simulations in a way that plausibly captured the contribution of different source areas to streamflow. This approach contributes to the quest for low-parameter models that can achieve process-based simulation of hydrological response. Copyright © 2009 John Wiley & Sons, Ltd. [source] Hydrometeorological controls and erosive response of an extreme alpine debris flowHYDROLOGICAL PROCESSES, Issue 19 2009Lorenzo Marchi Abstract On 29 August, 2003, an intense convective storm system affected the Fella River basin, in the eastern Italian Alps, producing rainfall peaks of approximately 390 mm in 12 h. The storm triggered an unusually large debris flow in the ungauged Rio Cucco basin (0·65 km2), with a volume of approximately 78 000 m3. The analysis of the time evolution of the rainstorm over the basin has been based on rainfall estimates from radar observations and data recorded by a raingauge network. Detailed geomorphological field surveys, carried out both before and after the flood of August 2003, and the application of a distributed hydrological model have enabled assessment of flood response, estimation of erosion volumes and sediment supply to the channel network. The accounts of two eyewitnesses have provided useful elements for reconstructing the time evolution and the flow processes involved in the event. Liquid peak discharge estimates cluster around 20 m3 s,1 km,2, placing this event on the flood envelope curve for the eastern Italian Alps. The hydrological analysis has shown that the major controls of the flood response were the exceptional cumulated rainfall amount, required to exceed the large initial losses, and the large rainfall intensities at hourly temporal scales, required to generate high flood response at the considered basin scale. Observations on the deposits accumulated on the alluvial fan indicate that, although the dominant flow process was a debris flow, sheetflood also contributed to fan aggradation and fluvial reworking had an important role in winnowing debris-flow lobes and redistributing sediment on the fan surface. This points out to the large discharge values during the recession phase of the flood, implying an important role for subsurface flow on runoff generation of this extreme flash flood event. Copyright © 2009 John Wiley & Sons, Ltd. [source] Fire effects on rangeland hydrology and erosion in a steep sagebrush-dominated landscape,HYDROLOGICAL PROCESSES, Issue 16 2008Frederick B. Pierson Abstract Post-fire runoff and erosion from wildlands has been well researched, but few studies have researched the degree of control exerted by fire on rangeland hydrology and erosion processes. Furthermore, the spatial continuity and temporal persistence of wildfire impacts on rangeland hydrology and erosion are not well understood. Small-plot rainfall and concentrated flow simulations were applied to unburned and severely burned hillslopes to determine the spatial continuity and persistence of fire-induced impacts on runoff and erosion by interrill and rill processes on steep sagebrush-dominated sites. Runoff and erosion were measured immediately following and each of 3 years post-wildfire. Spatial and temporal variability in post-fire hydrologic and erosional responses were compared with runoff and erosion measured under unburned conditions. Results from interrill simulations indicate fire-induced impacts were predominantly on coppice microsites and that fire influenced interrill sediment yield more than runoff. Interrill runoff was nearly unchanged by burning, but 3-year cumulative interrill sediment yield on burned hillslopes (50 g m,2) was twice that of unburned hillslopes (25 g m,2). The greatest impact of fire was on the dynamics of runoff once overland flow began. Reduced ground cover on burned hillslopes allowed overland flow to concentrate into rills. The 3-year cumulative runoff from concentrated flow simulations on burned hillslopes (298 l) was nearly 20 times that measured on unburned hillslopes (16 l). The 3-year cumulative sediment yield from concentrated flow on burned and unburned hillslopes was 20 400 g m,2 and 6 g m,2 respectively. Fire effects on runoff generation and sediment were greatly reduced, but remained, 3 years post-fire. The results indicate that the impacts of fire on runoff and erosion from severely burned steep sagebrush landscapes vary significantly by microsite and process, exhibiting seasonal fluctuation in degree, and that fire-induced increases in runoff and erosion may require more than 3 years to return to background levels. Published in 2008 by John Wiley & Sons, Ltd. [source] Incorporating variable source area hydrology into a curve-number-based watershed modelHYDROLOGICAL PROCESSES, Issue 25 2007Elliot M. Schneiderman Abstract Many water quality models use some form of the curve number (CN) equation developed by the Soil Conservation Service (SCS; U.S. Depart of Agriculture) to predict storm runoff from watersheds based on an infiltration-excess response to rainfall. However, in humid, well-vegetated areas with shallow soils, such as in the northeastern USA, the predominant runoff generating mechanism is saturation-excess on variable source areas (VSAs). We reconceptualized the SCS,CN equation for VSAs, and incorporated it into the General Watershed Loading Function (GWLF) model. The new version of GWLF, named the Variable Source Loading Function (VSLF) model, simulates the watershed runoff response to rainfall using the standard SCS,CN equation, but spatially distributes the runoff response according to a soil wetness index. We spatially validated VSLF runoff predictions and compared VSLF to GWLF for a subwatershed of the New York City Water Supply System. The spatial distribution of runoff from VSLF is more physically realistic than the estimates from GWLF. This has important consequences for water quality modeling, and for the use of models to evaluate and guide watershed management, because correctly predicting the coincidence of runoff generation and pollutant sources is critical to simulating non-point source (NPS) pollution transported by runoff. Copyright © 2007 John Wiley & Sons, Ltd. [source] The impact of groundwater,surface water interactions on the water balance of a mesoscale lowland river catchment in northeastern GermanyHYDROLOGICAL PROCESSES, Issue 2 2007Stefan Krause Abstract The glacially formed northeastern German lowlands are characterized by extensive floodplains, often interrupted by relatively steep moraine hills. The hydrological cycle of this area is governed by the tight interaction of surface water dynamics and the corresponding directly connected shallow groundwater aquifer. Runoff generation processes, as well as the extent and spatial distribution of the interaction between surface water and groundwater, are controlled by floodplain topography and by surface water dynamics. A modelling approach based on extensive experimental analyses is presented that describes the specific water balance of lowland areas, including the interactions of groundwater and surface water, as well as reflecting the important role of time-variable shallow groundwater stages for runoff generation in floodplains. In the first part, experimental investigations of floodplain hydrological characteristics lead to a qualitative understanding of the water balance processes and to the development of a conceptual model of the water balance and groundwater dynamics of the study area. Thereby model requirements which allow for an adequate simulation of the floodplain hydrology, considering also interactions between groundwater and surface water have been characterized. Based on these analyses, the Integrated Modelling of Water Balance and Nutrient Dynamics (IWAN) approach has been developed. This consists of coupling the surface runoff generation and soil water routines of the deterministic, spatially distributed hydrological model WASIM-ETH-I with the three-dimensional finite-difference-based numerical groundwater model MODFLOW and Processing MODFLOW. The model was applied successfully to a mesoscale subcatchment of the Havel River in northeast Germany. It was calibrated for two small catchments (1·4 and 25 km2), where the importance of the interaction processes between groundwater and surface waters and the sensitivity of several controlling parameters could be quantified. Validation results are satisfying for different years for the entire 198 km2 catchment. The model approach was further successfully tested for specific events. The experimental area is a typical example of a floodplain-dominated landscape. It was demonstrated that the lateral flow processes and the interactions between groundwater and surface water have a major importance for the water balance and periodically superimposed on the vertical runoff generation. Copyright © 2006 John Wiley & Sons, Ltd. [source] Hydrological and biogeochemical processes in a changing Amazon: results from small watershed studies and the large-scale biosphere-atmosphere experimentHYDROLOGICAL PROCESSES, Issue 12 2006Christopher Neill Abstract The Amazon Basin is the world's largest tropical forest region and one where rapid human changes to land cover have the potential to cause significant changes to hydrological and biogeochemical processes. The Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) is a multidisciplinary, multinational research program led by Brazil. The goal of LBA is to understand how the Amazon Basin functions as a regional entity in the earth system and how these functions are changing as a result of ongoing human activity. This compilation of nine papers focuses on a central LBA question in the area of nutrient dynamics and surface water chemistry,how do changes in land use alter fluxes of dissolved and particulate materials from uplands across riparian zones and down the channels of river corridors? These papers cover work conducted in small watersheds on a wide range of topics within the spirit and geographical focus area of LBA: water balance and runoff generation, nutrient transformations in riparian zones and stream channels, carbon fluxes in water moving from land to water and the influence of soils on flowpath structure and stream chemistry. Important new insights can be gained from these and other studies. Forest clearing for pastures results in a decrease in soil hydraulic conductivity that forces water into surficial flowpaths throughout most of the rainy season across wide regions of the Amazon. Riparian zones along small forest streams appear to be very effective in removing nitrate arriving from the uplands, while forest streams take up nitrate at very low rates, allowing them to travel downstream for long distances. Although substantial, the contribution of dissolved organic C (DOC) to the carbon flux from forests to streams appears to be lower than the flux of dissolved inorganic C that is subsequently outgassed as CO2. Remaining key challenges within LBA will be to synthesize existing data sets on river networks, soils, climate, land use and planned infrastructure for the Amazon to develop models capable of predicting hydrologic and biogeochemical fluxes at a variety of scales relevant to the development of strategies for sustainable management of the Amazon's remarkable forest, soil and freshwater resources. Copyright © 2006 John Wiley & Sons, Ltd. [source] A simulation model for unified interrill erosion and rill erosion on hillslopesHYDROLOGICAL PROCESSES, Issue 3 2006Q. Q. Liu Abstract A mathematical model was developed for simulating runoff generation and soil erosion on hillslopes. The model is comprised of three modules: one for overland flow, one for soil infiltration, and one for soil erosion including rill erosion and interrill erosion. Rainfall and slope characteristics affecting soil erosion on hillslopes were analysed. The model results show that the slope length and gradient, time distribution rainfall, and distribution of rills have varying influence on soil erosion. Erosion rate increases nonlinearly with increase in the slope length; a long slope length leads to more serious erosion. The effect of the slope gradient on soil erosion can be both positive and negative. Thus, there exists a critical slope gradient for soil erosion, which is about 45° for the rate of erosion at the end of the slope and about 25° for the accumulated erosion. Copyright © 2005 John Wiley & Sons, Ltd. [source] Assessment of flooding in urbanized ungauged basins: a case study in the Upper Tiber area, ItalyHYDROLOGICAL PROCESSES, Issue 10 2005T. Moramarco Abstract The reliability of a procedure for investigation of flooding into an ungauged river reach close to an urban area is investigated. The approach is based on the application of a semi-distributed rainfall,runoff model for a gauged basin, including the flood-prone area, and that furnishes the inlet flow conditions for a two-dimensional hydraulic model, whose computational domain is the urban area. The flood event, which occurred in October 1998 in the Upper Tiber river basin and caused significant damage in the town of Pieve S. Stefano, was used to test the approach. The built-up area, often inundated, is included in the gauged basin of the Montedoglio dam (275 km2), for which the rainfall,runoff model was adapted and calibrated through three flood events without over-bank flow. With the selected set of parameters, the hydrological model was found reasonably accurate in simulating the discharge hydrograph of the three events, whereas the flood event of October 1998 was simulated poorly, with an error in peak discharge and time to peak of ,58% and 20%, respectively. This discrepancy was ascribed to the combined effect of the rainfall spatial variability and a partial obstruction of the bridge located in Pieve S. Stefano. In fact, taking account of the last hypothesis, the hydraulic model reproduced with a fair accuracy the observed flooded urban area. Moreover, incorporating into the hydrological model the flow resulting from a sudden cleaning of the obstruction, which was simulated by a ,shock-capturing' one-dimensional hydraulic model, the discharge hydrograph at the basin outlet was well represented if the rainfall was supposed to have occurred in the region near the main channel. This was simulated by reducing considerably the dynamic parameter, the lag time, of the instantaneous unit hydrograph for each homogeneous element into which the basin is divided. The error in peak discharge and time to peak decreased by a few percent. A sensitivity analysis of both the flooding volume involved in the shock wave and the lag time showed that this latter parameter requires a careful evaluation. Moreover, the analysis of the hydrograph peak prediction due to error in rainfall input showed that the error in peak discharge was lower than that of the same input error quantity. Therefore, the obtained results allowed us to support the hypothesis on the causes which triggered the complex event occurring in October 1998, and pointed out that the proposed procedure can be conveniently adopted for flood risk evaluation in ungauged river basins where a built-up area is located. The need for a more detailed analysis regarding the processes of runoff generation and flood routing is also highlighted. Copyright © 2005 John Wiley & Sons, Ltd. [source] Snow, frozen soils and permafrost hydrology in Canada, 1999,2002HYDROLOGICAL PROCESSES, Issue 1 2005Ming-Ko Woo Abstract An overview is provided of Canadian research on snow, frozen soils and permafrost hydrology for 1999,2002, the period between the 1999 IUGG meeting in Birmingham and the 2003 IUGG in Sapporo. Snow research during this period emphasized the blowing snow and sublimation processes, the role of trees in snow distribution, and melt and the effect of heat advection on snowmelt, from patch to regional scales. Regional-scale studies, largely in connection with the Mackenzie GEWEX study, examined the snow conditions of the lower Mackenzie basin and developed a coupled land surface scheme,hydrological model that incorporates snow processes. In frost hydrology, the effects of organic soils on runoff generation and flow delivery were given much attention. Field investigations ranged from plot to hillslope scales, and the results indicate that organic layers of high porosity permit the production of quick flow, even when frozen. Highly fractured bedrock in the Canadian Shield has likewise the effect of permitting snowmelt infiltration at below-freezing temperatures. Finally, changes in snow-covered areas and in snow equivalent over periods from a decade to a century were examined. The responses of snow and ground ice to the warm year of 1998 were also studied as an indication of hydrological responses to climatic warming. Copyright © 2005 Crown in the right of Canada. Published by John Wiley & Sons, Ltd. [source] Using a topographic index to distribute variable source area runoff predicted with the SCS curve-number equationHYDROLOGICAL PROCESSES, Issue 15 2004Steve W. Lyon Abstract Because the traditional Soil Conservation Service curve-number (SCS-CN) approach continues to be used ubiquitously in water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed and tested a distributed approach for applying the traditional SCS-CN equation to watersheds where VSA hydrology is a dominant process. Predicting the location of source areas is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non-point-source pollution. The method presented here used the traditional SCS-CN approach to predict runoff volume and spatial extent of saturated areas and a topographic index, like that used in TOPMODEL, to distribute runoff source areas through watersheds. The resulting distributed CN,VSA method was applied to two subwatersheds of the Delaware basin in the Catskill Mountains region of New York State and one watershed in south-eastern Australia to produce runoff-probability maps. Observed saturated area locations in the watersheds agreed with the distributed CN,VSA method. Results showed good agreement with those obtained from the previously validated soil moisture routing (SMR) model. When compared with the traditional SCS-CN method, the distributed CN,VSA method predicted a similar total volume of runoff, but vastly different locations of runoff generation. Thus, the distributed CN,VSA approach provides a physically based method that is simple enough to be incorporated into water quality models, and other tools that currently use the traditional SCS,CN method, while still adhering to the principles of VSA hydrology. Copyright © 2004 John Wiley & Sons, Ltd. [source] Runoff generation from logged and burnt convergent hillslopes: rainfall simulation and modellingHYDROLOGICAL PROCESSES, Issue 5 2004Patrick N. J. Lane Abstract This paper reports results from field experiments and hydrological modelling on the dynamics of runoff generation in highly convergent parts of the landscape in a logged and burnt eucalypt forest in south-eastern Victoria, Australia. Large-scale rainfall simulation experiments were conducted to explore runoff generating mechanisms from harvested areas, and to assess the effectiveness of standard water quality protective measures, here a disturbed filter strip, in preventing accession of sediment to near-stream areas. We then examined the likely effects of varying antecedent moisture conditions on surface and subsurface runoff generating mechanisms. Very small volumes of surface runoff were generated only at very high rainfall intensity rates that exceeded a 100 year recurrence interval event during the simulated experiments. There was little or no identifiable impact of either compaction from logging operations or fire-induced hydrophobicity on surface infiltration or generation of surface runoff. Measured soil hydraulic properties and soil depths explained the paucity of surface runoff, and the dominance of subsurface storm flow as the prime runoff generating mechanism. Deep lateral subsurface flow was observed from the cut-face of a fire access track and into a streamhead downslope of the experimental plots. Water balance modelling using Topog_Dynamic indicated the conditions under which saturated overland flow in this environment could be generated are rare, but that care should be taken in siting of roads and tracks in lower parts of convergent landscapes. Copyright © 2004 John Wiley & Sons, Ltd. [source] Application of the distributed hydrology soil vegetation model to Redfish Creek, British Columbia: model evaluation using internal catchment dataHYDROLOGICAL PROCESSES, Issue 2 2003Andrew Whitaker Abstract The Distributed Hydrology Soil Vegetation Model is applied to the Redfish Creek catchment to investigate the suitability of this model for simulation of forested mountainous watersheds in interior British Columbia and other high-latitude and high-altitude areas. On-site meteorological data and GIS information on terrain parameters, forest cover, and soil cover are used to specify model input. A stepwise approach is taken in calibrating the model, in which snow accumulation and melt parameters for clear-cut and forested areas were optimized independent of runoff production parameters. The calibrated model performs well in reproducing year-to-year variability in the outflow hydrograph, including peak flows. In the subsequent model performance evaluation for simulation of catchment processes, emphasis is put on elevation and temporal differences in snow accumulation and melt, spatial patterns of snowline retreat, water table depth, and internal runoff generation, using internal catchment data as much as possible. Although the overall model performance based on these criteria is found to be good, some issues regarding the simulation of internal catchment processes remain. These issues are related to the distribution of meteorological variables over the catchment and a lack of information on spatial variability in soil properties and soil saturation patterns. Present data limitations for testing internal model accuracy serve to guide future data collection at Redfish Creek. This study also illustrates the challenges that need to be overcome before distributed physically based hydrologic models can be used for simulating catchments with fewer data resources. Copyright © 2003 John Wiley & Sons, Ltd. [source] Infiltration, runoff and sediment production in blanket peat catchments: implications of field rainfall simulation experimentsHYDROLOGICAL PROCESSES, Issue 13 2002J. Holden Abstract Blanket peat covers the headwaters of many major European rivers. Runoff production in upland blanket peat catchments is flashy with large flood peaks and short lag times; there is minimal baseflow. Little is known about the exact processes of infiltration and runoff generation within these upland headwaters. This paper presents results from a set of rainfall simulation experiments performed on the blanket peat moorland of the North Pennines, UK. Rainfall was simulated at low intensities (3,12 mm h,1), typical of natural rainfall, on bare and vegetated peat surfaces. Runoff response shows that infiltration rate increases with rainfall intensity; the use of low-intensity rainfall therefore allows a more realistic evaluation of infiltration rates and flow processes than previous studies. Overland flow is shown to be common on both vegetated and bare peat surfaces although surface cover does exert some control. Most runoff is produced within the top few centimetres of the peat and runoff response decreases rapidly with depth. Little vertical percolation takes place to depths greater than 10 cm owing to the saturation of the peat mass. This study provides evidence that the quickflow response of upland blanket peat catchments is a result of saturation-excess overland flow generation. Rainfall,runoff response from small plots varies with season. Following warm, dry weather, rainfall tends to infiltrate more readily into blanket peat, not just initially but to the extent that steady-state surface runoff rates are reduced and more flow takes place within the peat, albeit at shallow depth. Sediment erosion from bare peat plots tends to be supply limited. Seasonal weather conditions may affect this in that after a warm, dry spell, surface desiccation allows sediment erosion to become transport limited. Copyright © 2002 John Wiley & Sons, Ltd. [source] Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USAHYDROLOGICAL PROCESSES, Issue 3 2002James B. Shanley Abstract Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0,73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new,old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1.topographically controlled increase in surface-saturated area with increasing catchment size; 2.direct runoff over frozen ground; 3.low infiltration in agriculturally compacted soils; 4.differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright © 2002 John Wiley & Sons, Ltd. [source] Runoff generation and routing on artificial slopes in a Mediterranean,continental environment: the Teruel coalfield, SpainHYDROLOGICAL PROCESSES, Issue 3 2002José-Manuel Nicolau Abstract The aim of this study was to identify the mechanisms of runoff generation and routing and their controlling factors at the hillslope scale, on artificial slopes derived from surface coal mining reclamation in a Mediterranean,continental area. Rainfall and runoff at interrill and microcatchment scales were recorded for a year on two slopes with different substrata: topsoil cover and overburden cover. Runoff coefficient and runoff routing from interrill areas to microcatchment outlets were higher in the overburden substratum than in topsoil, and greater in the most developed rill network. Rainfall volume is the major parameter responsible for runoff response on overburden, suggesting that this substratum is very impermeable,at least during the main rainfall periods of the year (late spring and autumn) when the soil surface is sealed. In such conditions, most rainfall input is converted into runoff, regardless of its intensity. Results from artificial rainfall experiments, conducted 3 and 7 years after seeding, confirm the low infiltration capacity of overburden when sealed. The hydrological response shows great seasonal variability on the overburden slope in accordance with soil surface changes over the year. Rainfall volume and intensities (I30, I60) explain runoff at the interrill scale on the topsoil slope, where rainfall experiments demonstrated a typical Hortonian infiltration curve. However, no correlation was found at the microcatchment level, probably because of the loss of functionality of the only rill as ecological succession proceeded. The runoff generation mechanism on the topsoil slope is more homogeneous throughout the year. Runoff connectivity, defined as the ratio between runoff rates recorded at the rill network scale and those recorded at the interrill area scale in every rainfall event, was also greater on the rilled overburden slope, and in the most developed rill network. The dense rill networks of the overburden slope guarantee very effective runoff drainage, regardless of rainfall magnitude. Rills drain overland flow from interrill-sealed areas, reducing the opportunity of reinfiltration in areas not affected by siltation. Runoff generation and routing on topsoil slopes are controlled by grass cover and soil moisture content, whereas on overburden slopes rill network density and soil moisture content are the main controlling factors. Copyright © 2002 John Wiley & Sons, Ltd. [source] Process-oriented catchment modelling and multiple-response validationHYDROLOGICAL PROCESSES, Issue 2 2002S. Uhlenbrook Abstract The conceptual rainfall runoff model TAC (tracer-aided catchment model) has been developed based on the experimental results of tracer hydrological investigations at the mountainous Brugga and Zastler basins (40 and 18·4 km2). The model contains a physically realistic description of the runoff generation, which includes seven unit types each with characteristic dominating runoff generation processes. These processes are conceptualized by different linear and non-linear reservoir concepts. The model is applied to a period of 3·2 years on a daily time step with good success. In addition, an extensive model validation procedure was executed. Therefore, additional information (i.e. runoff in subbasins and a neighbouring basin, tracer concentrations and calculated runoff components) was used besides the simulated discharge of the basin investigated. This study shows the potential of tracer data for hydrological modelling. On the one hand, they are good tools to investigate the runoff generation processes. This is the basis for developing more realistic conceptualizations of the runoff generation routine. On the other hand, tracer data can serve as multi-response data to assess and validate a model. Copyright © 2002 John Wiley & Sons, Ltd. [source] A simple model of hillslope response for overland flow generationHYDROLOGICAL PROCESSES, Issue 17 2001Professor Carmelo Agnese Abstract This paper deals with the derivation of the hydrological response of a hillslope on the assumption of quick runoff by surface runoff generation. By using the simple non-linear storage based model, first proposed by Horton, an analytical solution of the overland flow equations over a plane hillslope was derived. This solution establishes a generalization for different flow regimes of Horton's original solution, which is valid for the transitional flow regime only. The solution proposed was compared successfully with that of Horton and, for the turbulent flow regime, to the one derived from kinematic wave theory. This solution can be applied easily to both stationary and non-stationary rainfall excess events. An analytical solution for the instantaneous response function (IRF) was also derived. Finally, simple expressions to compute peak and time to peak of IRF are proposed. Copyright © 2001 John Wiley & Sons, Ltd. [source] Hydrological impacts of forest conversion to agriculture in a large river basin in northeast ThailandHYDROLOGICAL PROCESSES, Issue 14 2001J. Wilk Abstract Small-scale experiments have demonstrated that forest clearance leads to an increase in water yield, but it is unclear if this result holds for larger river basins (>1000 km2). No widespread changes in rainfall totals and patterns were found in the 12 100 km2 Nam Pong catchment in northeast Thailand between 1957 and 1995, despite a reduction in the area classified as forest from 80% to 27% in the last three decades. Neither were any detectable changes found in any other water balance terms nor in the dynamics of the recession at the end of the rainy season. When a hydrological model calibrated against data from the period before the deforestation was applied for the last years of the study period (1987,1995), runoff generation was however underestimated by approximately 15%, indicating increased runoff generation after the deforestation. However, this was mainly due to the hydrological response during one single year in the first period, when the Q/P ratio was very low. When excluding this year, neither analysis based on the hydrological model could reveal any significant change of the water balance due to the deforestation. More detailed land-use analysis revealed that shade trees were left on agricultural plots as well as a number of abandoned areas where secondary growth can be expected, which is believed to account for the results. Copyright © 2001 John Wiley & Sons, Ltd. [source] |