Runoff

Distribution by Scientific Domains

Kinds of Runoff

  • agricultural runoff
  • annual runoff
  • cumulative runoff
  • river runoff
  • simulated runoff
  • snowmelt runoff
  • storm runoff
  • surface runoff
  • total runoff
  • water runoff

  • Terms modified by Runoff

  • runoff data
  • runoff event
  • runoff generation
  • runoff generation process
  • runoff mechanism
  • runoff model
  • runoff models
  • runoff plot
  • runoff production
  • runoff rate
  • runoff response
  • runoff sample
  • runoff source area
  • runoff volume

  • Selected Abstracts


    CONTROLLING PHOSPHORUS IN RUNOFF FROM LONG TERM DAIRY WASTE APPLICATION FIELDS,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2004
    Anne M.S. McFarland
    ABSTRACT: Phosphorus (P) in runoff from long term animal waste application fields can contribute to accelerated eutrophication of surface waters. Manure when applied at nitrogen (N) agronomic rates generally increases soil P concentrations, which can increase runoff of soluble P. Along the North Bosque River in central Texas, dairy waste application fields are identified as the most controllable nonpoint source of soluble P in a total maximum daily load. To evaluate P reduction practices for fields high in soil extractable P, edge-of-field runoff was measured from paired plots of Coastal bermudagrass (Cynodon dactylon) and sorghum (Sorghum bicolor)/ winter wheat (Triticum spp.). Plots (about 0.4 ha) received manure at P agronomic rates following Texas permit guidelines and commercial N during the pretreatment period. During the post-treatment period, control plots continued to receive manure at P agronomic rates and commercial N. Treatment plots received only commercial N during the post-treatment period. Use of only commercial N on soils with high extractable P levels significantly decreased P loadings in edge-of-field runoff by at least 40 percent, but runoff concentrations sometimes increased. No notable changes in extractable soil P concentrations were observed after five years of monitoring due to drought conditions limiting forage uptake and removal. [source]


    RUNOFF AND SEDIMENT RESPONSES TO CONSERVATION PRACTICES: LOESS PLATEAU OF CHINA,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2003
    Mingbin Huang
    ABSTRACT: Soil erosion is the most significant threat to land productivity and environmental quality on the Loess Plateau of China. The annual total sediment load of the Yellow River is 1.6 billion tons, with about 90 percent coming from soil erosion from the Loess Plateau. To reduce soil erosion from the Loess Plateau, conservation practices, including tree planting, ridge construction between fields and around gullies, terrace and ditch construction perpendicular to the main slope, and dam construction are being implemented. An evaluation of these conservation practices is required before they are implemented at the large scale. The objective of this study is to evaluate the effectiveness of conservation practices to control runoff and sediment yield from paired watersheds in the hilly gully region of the Loess Plateau. The advantage of the paired watershed approach is its sensibility in detecting differences in runoff and sediment transport by monitoring both watersheds during two periods, an initial period with no conservation practices and a treatment period with only one watershed subjected to conservation practices. Implementation of the conservation practices resulted in (1) cumulative runoff and sediment yield that were, respectively, 25 and 38 percent less from the treatment watershed than from the control, (2) a decrease in the number of rainfall events producing runoff and sediment transport (94 in the control versus 63 in treatment), and (3) a reduction in the maximum discharge and maximum suspended sediment concentration. [source]


    INPUTS OF COPPER-BASED CROP PROTECTANTS TO COASTAL CREEKS FROM PASTICULTURE RUNOFF,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2001
    Andrea M. Dietrich
    ABSTRACT: Inputs of copper-based crop protectants from tomato fields grown under plastic mulch agriculture (plasticulture) to an estuarine creek were investigated. Copper was measured in runoff from diverse land-uses including conventional agriculture, plasticulture, residences, and natural areas. Water column and sediment copper concentrations were measured in plasticulture and control (nonagriculture) watersheds. Copper concentrations in plasticulture-impacted creeks exceeded background levels episodically. High concentrations occurred during or immediately after runoff-producing rains. Concentrations of 263 ,g/L total copper and 126 ,g/L dissolved copper were measured in a tidal creek affected by plasticulture; concentrations exceeded the shellfish LC50 values and the water quality criteria of 2.9 ,g/L dissolved copper. Control watersheds indicated background water column levels of , 4 ,g/L dissolved copper with similar copper levels during periods with and without rain. The copper concentrations in tomato plasticulture field runoff itself contained up to 238 ,g/L dissolved copper. Copper concentrations in runoff from other land-uses were less than 5 ,g/L dissolved copper. Creek sediment samples adjacent to a plasticulture field contained significantly higher copper concentrations than sediments taken from nonplasticulture watersheds. [source]


    AN ORGANIZED SIGNAL IN SNOWMELT RUNOFF OVER THE WESTERN UNITED STATES,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2000
    D. H. Peterson
    ABSTRACT: Daily-to-weekly discharge during the snowmelt season is highly correlated among river basins in the upper elevations of the central and southern Sierra Nevada (Carson, Walker, Tuolumne, Merced, San Joaquin, Kings, and Kern Rivers). In many cases, the upper Sierra Nevada watershed operates in a single mode (with varying catchment amplitudes). In some years, with appropriate lags, this mode extends to distant mountains. A reason for this coherence is the broad scale nature of synoptic features in atmospheric circulation, which provide anomalous insolation and temperature forcing that span a large region, sometimes the entire western U.S. These correlations may fall off dramatically, however, in dry years when the snowpack is spatially patchy. [source]


    Prescribed-fire effects on rill and interrill runoff and erosion in a mountainous sagebrush landscape ,

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 2 2009
    Frederick B. Pierson
    Abstract Changing fire regimes and prescribed-fire use in invasive species management on rangelands require improved understanding of fire effects on runoff and erosion from steeply sloping sagebrush-steppe. Small (0·5 m2) and large (32·5 m2) plot rainfall simulations (85 mm h,1, 1 h) and concentrated flow methodologies were employed immediately following burning and 1 and 2 years post-fire to investigate infiltration, runoff and erosion from interrill (rainsplash, sheetwash) and rill (concentrated flow) processes on unburned and burned areas of a steeply sloped sagebrush site on coarse-textured soils. Soil water repellency and vegetation were assessed to infer relationships in soil and vegetation factors that influence runoff and erosion. Runoff and erosion from rainfall simulations and concentrated flow experiments increased immediately following burning. Runoff returned to near pre-burn levels and sediment yield was greatly reduced with ground cover recovery to 40 per cent 1 year post-fire. Erosion remained above pre-burn levels on large rainfall simulation and concentrated flow plots until ground cover reached 60 per cent two growing seasons post-fire. The greatest impact of the fire was the threefold reduction of ground cover. Removal of vegetation and ground cover and the influence of pre-existing strong soil-water repellency increased the spatial continuity of overland flow, reduced runoff and sediment filtering effects of vegetation and ground cover, and facilitated increased velocity and transport capacity of overland flow. Small plot rainfall simulations suggest ground cover recovery to 40 per cent probably protected the site from low-return-interval storms, large plot rainfall and concentrated flow experiments indicate the site remained susceptible to elevated erosion rates during high-intensity or long duration events until ground cover levels reached 60 per cent. The data demonstrate that the persistence of fire effects on steeply-sloped, sandy sagebrush sites depends on the time period required for ground cover to recover to near 60 per cent and on the strength and persistence of ,background' or fire-induced soil water repellency. Published in 2009 by John Wiley & Sons, Ltd. [source]


    Interrill erosion on cultivated Greek soils: modelling sediment delivery

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2006
    D. Dimoyiannis
    Abstract For interrill erosion, raindrop-induced detachment and transport of sediment by rainfall-disturbed sheet flow are the predominant processes, while detachment by sheet flow and transport by raindrop impact are negligible. In general, interrill subprocesses are inter-actively affected by rainfall, soil and surface properties. The objective of this work was to study the relationships among interrill runoff and sediment loss and some selected para-meters, for cultivated soils in central Greece, and also the development of a formula for predicting single storm sediment delivery. Runoff and soil loss measurement field experiments have been conducted for a 3·5-year period, under natural storms. The soils studied were developed on Tertiary calcareous materials and Quaternary alluvial deposits and were textured from sandy loam to clay. The second group of soils showed greater susceptibility to sealing and erosion than the first group. Single storm sediment loss was mainly affected by rain and runoff erosivity, being significantly correlated with rain kinetic energy (r = 0·64***), its maximum 30-minute intensity (r = 0·64***) and runoff amount (r = 0·56***). Runoff had the greatest correlation with rain kinetic energy (r = 0·64***). A complementary effect on soil loss was detected between rain kinetic energy and its maximum 30-minute intensity. The same was true for rain kinetic energy and topsoil aggregate instability, on surface seal formation and thus on infiltration characteristics and overland flow rate. Empirical analysis showed that the following formula can be used for the successful prediction of sediment delivery (Di): Di = 0·638,EI30tan(,) (R2 = 0·893***), where , is a topsoil aggregate instability index, E the rain kinetic energy, I30 the maximum 30-minute rain intensity and , the slope angle. It describes soil erodibility using a topsoil aggregate instability index, which can be determined easily by a simple laboratory technique, and runoff through the product of this index and rain kinetic energy. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Runoff and soil loss under individual plants of a semi-arid Mediterranean shrubland: influence of plant morphology and rainfall intensity

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 5 2006
    E. Bochet
    Abstract The influence of plant morphology and rainfall intensity on soil loss and runoff was determined at the plant scale for three representative species of a semi-arid patchy shrubland vegetation of east Spain, representing contrasting canopy structures and plant phenologies (Rosmarinus officinalis, Anthyllis cytisoides and Stipa tenacissima). Twenty-seven microplots of less than 1 m2, each containing one single plant, were built to quantify runoff volume and sediment yield under the canopies of the three species. Runoff and rates of soil loss measured in these plots under natural rainfall conditions were compared with control microplots built in the bare inter-plant areas. Precipitation was automatic-ally recorded and rainfall intensity calculated over a two-year period. Results indicated that individual plants played a relevant role in interrill erosion control at the microscale. Compared with a bare soil surface, rates of soil loss and runoff reduction varied strongly depending on the species. Cumulative soil loss was reduced by 94·3, 88·0 and 30·2 per cent, and cumulative runoff volume was reduced by 66·4, 50·8 and 18·4 per cent under the Rosmarinus, Stipa and Anthyllis canopies, respectively, compared with a bare surface. Anthyllis was significantly less efficient than the two other species in reducing runoff volume under its canopy. Differences between species could only be identified above a rainfall intensity threshold of 20 mm h,1. The different plant morphologies and plant compon-ents explained the different erosive responses of the three species. Canopy cover played a major role in runoff and soil loss reduction. The presence of a second layer of protection at the soil surface (litter cover) was fundamental for erosion control during intense rainfall. Rainfall intensity and soil water status prior to rainfall strongly influenced runoff and soil loss rates. The possible use of these species in restoration programmes of degraded areas is discussed. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Environmental concentrations of methoprene and its transformation products after the treatment of Altosid® XR Briquets in the city of Richmond, British Columbia, Canada

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2010
    Jen-ni Kuo
    Abstract Water runoff from catch basins treated with Altosid® XR Briquets for mosquito larvae control was sampled at 10 storm drainage pump stations along the outskirts of the city of Richmond, British Columbia, Canada after rainfall events in 2006 to determine the residual concentrations of methoprene and transformation products: citronellic acid, methoprene acid, and 7-methoxycitronellic acid. Runoff of prior-to-treatment, posttreatment, and 150-d-after-treatment was collected. No residues were detected in the prior-to-treatment samples. However, methoprene was detected in posttreatment, and citronellic acid was detected in posttreatment and one 150-d-after-treatment sample. The detected environmental concentrations of methoprene (0.04,0.14,µg/L) and methoprene acid (0.07,µg/L) at pump stations were below known/reported toxicity values to aquatic organisms. However, concentrations detected inside the storm drainage system in catch basins (methoprene 122,µg/L, methoprene acid 1.74,µg/L) and inspection chambers (methoprene 622,µg/L, methoprene acid 20,µg/L, citronellic acid 0.05,µg/L) are known to be toxic to invertebrates, have chronic early-life-stage fish effects, and exceeded the Draft Interim Ontario Water Quality Objective and the numerical benchmarks for protection of amphibians (1.6,µg/L), invertebrates (10,µg/L), and fish (80,µg/L). The limited detection in the present study may have resulted from significant absorption of methoprene to sample bottle walls, substance decay during sample storage before methoprene extraction, flushing of briquettes from catch basins following heavy rainfall, and the burial of briquettes under thick layers of debris. Environ. Toxicol. Chem. 2010;29:2200,2205. © 2010 SETAC [source]


    Use of vegetative furrows to mitigate copper loads and soil loss in runoff from polyethylene (plastic) mulch vegetable production systems

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2004
    Pamela J. Rice
    Abstract The transport of runoff with high copper concentrations and sediment loads into adjacent surface waters can have adverse effects on nontarget organisms as a result of increased turbidity and degraded water quality. Runoff from vegetable production utilizing polyethylene mulch can contain up to 35% of applied copper, a widely used fungicide/bactericide that has adverse effects on aquatic organisms. Copper is primarily transported in runoff with suspended particulates; therefore, implementation of management practices that minimize soil erosion will reduce copper loads. Replacing bare-soil furrows with furrows planted in rye (Secale cereale) significantly improved the sustainability of vegetable production with polyethylene mulch and reduced the potential environmental impact of this management practice. Vegetative furrows decreased runoff volume by >40% and soil erosion by >80%. Copper loads with runoff were reduced by 72% in 2001, primarily as a result of reduced soil erosion since more than 88% of the total copper loads were transported in runoff with suspended soil particulates. Tomato yields in both years were similar between the polyethylene mulch plots containing either bare-soil or vegetative furrows. Replacing bare-soil furrows with vegetative furrows greatly reduces the effects of sediments and agrochemicals on sensitive ecosystems while maintaining crop yields. [source]


    Fire effects on rangeland hydrology and erosion in a steep sagebrush-dominated landscape,

    HYDROLOGICAL PROCESSES, Issue 16 2008
    Frederick B. Pierson
    Abstract Post-fire runoff and erosion from wildlands has been well researched, but few studies have researched the degree of control exerted by fire on rangeland hydrology and erosion processes. Furthermore, the spatial continuity and temporal persistence of wildfire impacts on rangeland hydrology and erosion are not well understood. Small-plot rainfall and concentrated flow simulations were applied to unburned and severely burned hillslopes to determine the spatial continuity and persistence of fire-induced impacts on runoff and erosion by interrill and rill processes on steep sagebrush-dominated sites. Runoff and erosion were measured immediately following and each of 3 years post-wildfire. Spatial and temporal variability in post-fire hydrologic and erosional responses were compared with runoff and erosion measured under unburned conditions. Results from interrill simulations indicate fire-induced impacts were predominantly on coppice microsites and that fire influenced interrill sediment yield more than runoff. Interrill runoff was nearly unchanged by burning, but 3-year cumulative interrill sediment yield on burned hillslopes (50 g m,2) was twice that of unburned hillslopes (25 g m,2). The greatest impact of fire was on the dynamics of runoff once overland flow began. Reduced ground cover on burned hillslopes allowed overland flow to concentrate into rills. The 3-year cumulative runoff from concentrated flow simulations on burned hillslopes (298 l) was nearly 20 times that measured on unburned hillslopes (16 l). The 3-year cumulative sediment yield from concentrated flow on burned and unburned hillslopes was 20 400 g m,2 and 6 g m,2 respectively. Fire effects on runoff generation and sediment were greatly reduced, but remained, 3 years post-fire. The results indicate that the impacts of fire on runoff and erosion from severely burned steep sagebrush landscapes vary significantly by microsite and process, exhibiting seasonal fluctuation in degree, and that fire-induced increases in runoff and erosion may require more than 3 years to return to background levels. Published in 2008 by John Wiley & Sons, Ltd. [source]


    Runoff and suspended sediment yields from an unpaved road segment, St John, US Virgin Islands

    HYDROLOGICAL PROCESSES, Issue 1 2007
    Carlos E. Ramos-Scharrón
    Abstract Unpaved roads are believed to be the primary source of terrigenous sediments being delivered to marine ecosystems around the island of St John in the eastern Caribbean. The objectives of this study were to: (1) measure runoff and suspended sediment yields from a road segment; (2) develop and test two event-based runoff and sediment prediction models; and (3) compare the predicted sediment yields against measured values from an empirical road erosion model and from a sediment trap. The runoff models use the Green,Ampt infiltration equation to predict excess precipitation and then use either an empirically derived unit hydrograph or a kinematic wave to generate runoff hydrographs. Precipitation, runoff, and suspended sediment data were collected from a 230 m long, mostly unpaved road segment over an 8-month period. Only 3,5 mm of rainfall was sufficient to initiate runoff from the road surface. Both models simulated similar hydrographs. Model performance was poor for storms with less than 1 cm of rainfall, but improved for larger events. The largest source of error was the inability to predict initial infiltration rates. The two runoff models were coupled with empirical sediment rating curves, and the predicted sediment yields were approximately 0·11 kg per square meter of road surface per centimetre of precipitation. The sediment trap data indicated a road erosion rate of 0·27 kg m,2 cm,1. The difference in sediment production between these two methods can be attributed to the fact that the suspended sediment samples were predominantly sand and silt, whereas the sediment trap yielded mostly sand and gravel. The combination of these data sets yields a road surface erosion rate of 0·31 kg m,2 cm,1, or approximately 36 kg m,2 year,1. This is four orders of magnitude higher than the measured erosion rate from undisturbed hillslopes. The results confirm the importance of unpaved roads in altering runoff and erosion rates in a tropical setting, provide insights into the controlling processes, and provide guidance for predicting runoff and sediment yields at the road-segment scale. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Comparative assessment of two distributed watershed models with application to a small watershed

    HYDROLOGICAL PROCESSES, Issue 11 2006
    Latif Kalin
    Abstract Distributed watershed models are beneficial tools for the assessment of management practices on runoff and water-induced erosion. This paper evaluates, by application to an experimental watershed, two promising distributed watershed-scale sediment models in detail: the Kinematic Runoff and Erosion (KINEROS-2) model and the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model. The physics behind each model are to some extent similar, though they have different watershed conceptualizations. KINEROS-2 was calibrated using three rainfall events and validated over four separate rainfall events. Parameters estimated by this calibration process were adapted to GSSHA. With these parameters, GSSHA generated larger and retarded flow hydrographs. A 30% reduction in both plane and channel roughness in GSSHA along with the assumption of Green-Ampt conductivity KG-A = Ks, where Ks is the saturated conductivity, resulted in almost identical hydrographs. Sediment parameters not common in both models were calibrated independently of KINEROS-2. A comparative discussion of simulation results is presented. Even though GSSHA's flow component slightly overperformed KINEROS-2, the latter outperformed GSSHA in simulations for sediment transport. In spite of the fact that KINEROS-2 is not geared toward continuous-time simulations, simulations performed with both models over a 1 month period generated comparable results. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Runoff and peak flow responses to timber harvest and forest age in southern Chile

    HYDROLOGICAL PROCESSES, Issue 1 2006
    Professor Andrés Iroumé
    Abstract Runoff and peak flows in three experimental catchments with different forest conditions were analysed in a rainy temperate climate in southern Chile. The hydrological effects of clearcutting a Pinus radiata plantation covering 79·4% of the La Reina catchment were studied by analysing runoff and peak flows in the pre- and post-harvesting periods. Mean annual runoff increased 110% after timber harvesting. Clearcutting generated a 32% mean increase in peak flows. Peak flow and runoff were examined in two adjacent catchments with different forest conditions. The older plantation in Los Ulmos 1 increasingly consumed more water than the younger plantation established at Los Ulmos 2, whereas differences in peak flows between these two catchments were not significant. Runoff and peak flows comparisons not only reflected changes in forest cover, but also the effect of rainfall characteristics during the study periods and the basins' morphologies. Comparisons between pre- and post-harvesting peak discharges must be undertaken with caution, because a previous analysis at La Reina using a partial set of data overestimated changes in peak flows after timber harvesting. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain Research Watershed (Georgia, USA)

    HYDROLOGICAL PROCESSES, Issue 10 2001
    Douglas A. Burns
    Abstract The geographic sources and hydrologic flow paths of stormflow in small catchments are not well understood because of limitations in sampling methods and insufficient resolution of potential end members. To address these limitations, an extensive hydrologic dataset was collected at a 10 ha catchment at Panola Mountain Research Watershed near Atlanta, GA, to quantify the contribution of three geographic sources of stormflow. Samples of stream water, runoff from an outcrop, and hillslope subsurface stormflow were collected during two rainstorms in the winter of 1996, and an end-member mixing analysis model that included five solutes was developed. Runoff from the outcrop, which occupies about one-third of the catchment area, contributed 50,55% of the peak streamflow during the 2 February rainstorm, and 80,85% of the peak streamflow during the 6,7 March rainstorm; it also contributed about 50% to total streamflow during the dry winter conditions that preceded the 6,7 March storm. Riparian groundwater runoff was the largest component of stream runoff (80,100%) early during rising streamflow and throughout stream recession, and contributed about 50% to total stream runoff during the 2 February storm, which was preceded by wet winter conditions. Hillslope runoff contributed 25,30% to peak stream runoff and 15,18% to total stream runoff during both storms. The temporal response of the three runoff components showed general agreement with hydrologic measurements from the catchment during each storm. Estimates of recharge from the outcrop to the riparian aquifer that were independent of model calculations indicated that storage in the riparian aquifer could account for the volume of rain that fell on the outcrop but did not contribute to stream runoff. The results of this study generally indicate that improvements in the ability of mixing models to describe the hydrologic response accurately in forested catchments may depend on better identification, and detailed spatial and temporal characterization of the mobile waters from the principal hydrologic source areas that contribute to stream runoff. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    160 Copepodology for the Phycologist with Apologies to G. E. Hutchenson

    JOURNAL OF PHYCOLOGY, Issue 2003
    P. A. Tester
    Heterocapsa triquetra is one of the most common bloom forming dinoflagellates found in estuaries and near shore regions around the world. In order to bloom, H. triquetra optimizes a suite of factors including low grazing pressure, increased nutrient inputs, alternative nutrient sources, and favorable salinity and hydrodynamic conditions, as well as the negative factors of temperature-limited growth, short day lengths, and periods of transient light limitation. The prevailing environmental conditions associated its wintertime blooms are largely the result of atmospheric forcing. Low-pressure systems moved through coastal area at frequent intervals and are accompanied by low air temperatures and rainfall. Runoff following the rainfall events supplies nutrients critical for bloom initiation and development. Heterocapsa triquetra blooms can reach chl a levels >100 mg L,1 and cell densities between 1 to 6×106 L,1. As the blooms develop, nutrient inputs from the river became insufficient to meet growth demand and H. triquetra feeds mixotrophically, reducing competition from co-occurring phytoplankton. Cloud cover associated with the low-pressure systems light limit H. triquetra growth as do low temperatures. More importantly though, low temperatures limit micro and macrozooplankton populations to such an extent that grazing losses are minimal. [source]


    Review of Pesticide Retention Processes Occurring in Buffer Strips Receiving Agricultural Runoff,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2010
    Kapil Arora
    Arora, Kapil, Steven K. Mickelson, Matthew J. Helmers, and James L. Baker, 2010. Review of Pesticide Retention Processes Occurring in Buffer Strips Receiving Agricultural Runoff. Journal of the American Water Resources Association (JAWRA) 46(3):618-647. DOI: 10.1111/j.1752-1688.2010.00438.x Abstract:, Review of the published results shows that the retention of the two pesticide carrier phases (runoff volume and sediment mass) influences pesticide mass transport through buffer strips. Data averaged across different studies showed that the buffer strips retained 45% of runoff volume (ranging between 0 and 100%) and 76% of sediment mass (ranging between 2 and 100%). Sorption (soil sorption coefficient, Koc) is one key pesticide property affecting its transport with the two carrier phases through buffer strips. Data from different studies for pesticide mass retention for weakly (Koc < 100), moderately (100 < Koc < 1,000), and strongly sorbed pesticides (Koc > 1,000) averaged (with ranges) 61 (0-100), 63 (0-100), and 76 (53-100) %, respectively. Because there are more data for runoff volume and sediment mass retention, the average retentions of both carrier phases were used to calculate that the buffer strips would retain 45% of weakly to moderately sorbed and 70% of strongly sorbed pesticides on an average basis. As pesticide mass retention presented is only an average across several studies with different experimental setups, the application of these results to actual field conditions should be carefully examined. [source]


    Grass-Shrub Riparian Buffer Removal of Sediment, Phosphorus, and Nitrogen From Simulated Runoff,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2007
    Kyle R. Mankin
    Abstract:, Riparian buffer forests and vegetative filter strips are widely recommended for improving surface water quality, but grass-shrub riparian buffer system (RBSs) are less well studied. The objective of this study was to assess the influence of buffer width and vegetation type on the key processes and overall reductions of total suspended solids (TSS), phosphorus (P), and nitrogen (N) from simulated runoff passed through established (7-year old) RBSs. Nine 1-m RBS plots, with three replicates of three vegetation types (all natural selection grasses, two-segment buffer with native grasses and plum shrub, and two-segment buffer with natural selection grasses and plum shrub) and widths ranging from 8.3 to 16.1 m, received simulated runoff having 4,433 mg/l TSS from on-site soil, 1.6 mg/l total P, and 20 mg/l total N. Flow-weighted samples were collected by using Runoff Sampling System (ROSS) units. The buffers were very efficient in removal of sediments, N, and P, with removal efficiencies strongly linked to infiltration. Mass and concentration reductions averaged 99.7% and 97.9% for TSS, 91.8% and 42.9% for total P, and 92.1% and 44.4% for total N. Infiltration alone could account for >75% of TSS removal, >90% of total P removal, and >90% of total N removal. Vegetation type induced significant differences in removal of TSS, total P, and total N. These results demonstrate that adequately designed and implemented grass-shrub buffers with widths of only 8 m provide for water quality improvement, particularly if adequate infiltration is achieved. [source]


    INTEGRATING LANDSCAPE ASSESSMENT AND HYDROLOGIC MODELING FOR LAND COVER CHANGE ANALYSIS,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2002
    Scott N. Miller
    ABSTRACT: Significant land cover changes have occurred in the watersheds that contribute runoff to the upper San Pedro River in Sonora, Mexico, and southeast Arizona. These changes, observed using a series of remotely sensed images taken in the 1970s, 1980s, and 1990s, have been implicated in the alteration of the basin hydrologic response. The Cannonsville subwatershed, located in the Catskill/Delaware watershed complex that delivers water to New York City, provides a contrast in land cover change. In this region, the Cannonsville watershed condition has improved over a comparable time period. A landscape assessment tool using a geographic information system (GIS) has been developed that automates the parameterization of the Soil and Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion (KINEROS) hydrologic models. The Automated Geospatial Watershed Assessment (AGWA) tool was used to prepare parameter input files for the Upper San Pedro Basin, a subwatershed within the San Pedro undergoing significant changes, and the Cannonsville watershed using historical land cover data. Runoff and sediment yield were simulated using these models. In the Cannonsville watershed, land cover change had a beneficial impact on modeled watershed response due to the transition from agriculture to forest land cover. Simulation results for the San Pedro indicate that increasing urban and agricultural areas and the simultaneous invasion of woody plants and decline of grasslands resulted in increased annual and event runoff volumes, flashier flood response, and decreased water quality due to sediment loading. These results demonstrate the usefulness of integrating remote sensing and distributed hydrologic models through the use of GIS for assessing watershed condition and the relative impacts of land cover transitions on hydrologic response. [source]


    RUNOFF NUTRIENT AND FECAL COLIFORM CONTENT FROM CATTLE MANURE APPLICATION TO FESCUE PLOTS,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2000
    D. R. Edwards
    ABSTRACT: Grazed pastures represent a potential source of non-point pollution. In comparison to other nonpoint sources (e.g., row-cropped lands), relatively little information exists regarding possible magnitudes of pollution from grazed pasture; how that pollution is affected by weather, soil, management and other variables; and how the pollution can be minimized. The objective of this study was to assess how the quality of runoff from fescue plots is influenced by duration of cattle manure application (4,12 weeks) and manure application strategy (none, weekly application of 1.4 kg/plot, and monthly application at 5.6 kg/plot). Additional analyses were performed to relate runoff quality to the timing of sample collection. The study was conducted at the University of Kentucky Maine Chance Agricultural Experiment Station north of Lexington. Plots (2.4 m wide by 6.1 m long) were constructed and established in Kentucky 31 fescue (Festuca arundinacea Schreb.) to represent pasture. Grazing was simulated by application of beef cattle manure to the plots. Runoff was generated by applying simulated rainfall approximately 4, S and 12 weeks following initiation of manure application. Runoff samples were collected and analyzed according to standard methods for nitrogen (N), phosphorus (P) and fecal coliforms (FC). Runoff concentrations of N and P from manure-treated plots were low and generally not consistently different from control plot concentrations or related to manure application strategy. Runoff FC concentrations from manure-treated plots were higher than from control plot concentrations. Runoff concentrations of ammonia N, total Kjeldahl N, ortho-P and FC decreased approximately exponentially in response to increasing time of sample collection. These findings suggest that manure deposition on well-managed pasture at the rates used in this study might have a negligible impact on nutrient content of runoff. [source]


    Effects of field reorganisation on the spatial variability of runoff and erosion rates in vineyards of Northeastern Spain

    LAND DEGRADATION AND DEVELOPMENT, Issue 1 2010
    M. C. Ramos
    Abstract This study analyses the spatial variability of runoff and erosion rates in vineyards due to mechanisation works. Runoff samples were collected at three positions in two plots after 33 erosive events in three years (2001, 2003, 2004) with different rainfall patterns. Three replications were considered at each position. Soil properties were evaluated in order to analyse its relationship with runoff and erosion rates. Runoff and erosion rates were, on average, higher in the levelled plot (HD), ranging between 8·4 and 34·3 per cent, than in the non-levelled plot (LD) ranging between 8·2 and 24·1 per cent. Mean sediment concentration in runoff ranged between 6 and 8,g,L,1 in the HD plot and about 4·6,g,L,1 in the LD plot, but with high differences within the plot. In the HD plot, runoff-rainfall rates were significantly higher (at 95 per cent level) in the upper part of the slope and decreased along the slope, while in the LD plot, differences in runoff rates were not significant and similar to those observed in the less disturbed areas of the HD plot. The higher susceptibility to soil sealing in areas where the original topsoil was removed conditioned runoff rates. In the lower part of the HD plot runoff rates were, on average, 20 per cent lower than in the upper part of the slope. In those positions runoff rates up to 79 per cent were recorded. Organic matter content and water retention capacity at different potentials are the soil characteristics related to the differences on runoff and erosion rates in the resulting soils. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Reducing runoff by managing crop location at the catchment level, considering agronomic constraints at farm level

    LAND DEGRADATION AND DEVELOPMENT, Issue 5 2006
    A. Joannon
    Abstract Runoff and erosion cause frequent damage through muddy floods in the loess belt of Northern Europe. One possibility for reducing damage is to lower runoff on agricultural land by spatially alternating different crops at the catchment level. But crop location results from decisions taken at the farm level. This study aimed to assess the existing leeway to modify crop location in the farms of a catchment, in order to reduce runoff at the catchment's outlet. The case study was the Bourville catchment (1086,ha), cultivated by 28 farmers and located in Pays de Caux, France. First, crop location rules in the 14 main farms of the catchment were analysed on the basis of surveys carried out with farmers, distinguishing spatial constraints from temporal ones. These rules made it possible to simulate crop location on each farm territory for the 2001,2002 crop year. Each field of the catchment was classified depending on whether one or several crops could be sown, taking into account both field history and farmer decision rules. Then two extreme scenarios of crop location in the Bourville catchment were built. Runoff simulation at the outlet with the STREAM model showed that runoff could be reduced while sticking to current farmer decision rules in terms of crop location. Depending on rainfall event characteristics, runoff reduction varied between 13·5,per,cent and 4·5,per,cent. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Runoff and losses by erosion in soils amended with sewage sludge

    LAND DEGRADATION AND DEVELOPMENT, Issue 6 2003
    G. Ojeda
    Abstract In order to promote the transformation of a burnt Mediterranean forest area into a dehesa system, 10,t,ha,1 of dry matter of the same sewage sludge in three different forms: fresh, composted and thermally-dried, were added superficially to field plots of loam and sandy soils located on a 16,per,cent slope. This application is equivalent to 13,8,t,ha,1 of composted sludge, 50,t,ha,1 of fresh sludge and 11,3,t,ha,1 of thermally-dried sludge. The surface addition of a single application of thermally-dried sludge resulted in a decrease in runoff and erosion in both kinds of soil. Runoff in thermally-dried sludge plots was lower than in the control treatment (32,per,cent for the loam soil and 26,per,cent for the sandy soil). The addition of any type of sludge to both soil types also reduces sediment production. Significant differences between the control and sludge treatments indicate that the rapid development of plant cover and the direct protective effect of sludge on the soil are the main agents that influence soil erosion rates. Results suggest that the surface application of thermally-dried sludge is the most efficient way to enhance soil infiltration. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Chemical denudation rates and carbon dioxide drawdown in an ice-free polar karst catchment: Londonelva, Svalbard

    PERMAFROST AND PERIGLACIAL PROCESSES, Issue 4 2007
    awa Ewa Krawczyk
    Abstract Chemical denudation rates and carbon dioxide withdrawal were calculated for the Londonelva basin, an ice-free karst catchment on Svalbard. Runoff was recorded 12 June to 11 October 2000 and water samples were collected daily in August. The chemical denudation rate that month amounted to 2.2,m3,km,2. The estimated chemical denudation rate for 2000 was 5.8,m3,km,2,yr,1 or 303 , meq+ m,2,yr,1, but this rate may be unusually low because basin runoff was only 158,×,103,m3, the lowest since recording began in 1992. For other discharge years estimated chemical denudation rates range from 5.8 to 13.3,m3,km,2,yr,1 or 300,690 , meq+ m,2,yr,1. The CO2 withdrawal in August 2000 amounted to 560,kg,C,km,2 and for the hydrological year 2000 it was 1560,kg,C km,2,yr,1. In 1993, the highest recorded runoff year, withdrawal of CO2 may have reached 3800,kg,C km,2,yr,1. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Hydrologic response of the Greenland ice sheet: the role of oceanographic warming

    HYDROLOGICAL PROCESSES, Issue 1 2009
    E. Hanna
    Abstract The response of the Greenland ice sheet to ongoing climate change remains an area of great uncertainty, with most previous studies having concentrated on the contribution of the atmosphere to the ice mass-balance signature. Here we systematically assess for the first time the influence of oceanographic changes on the ice sheet. The first part of this assessment involves a statistical analysis and interpretation of the relative changes and variations in sea-surface temperatures (SSTs) and air temperatures around Greenland for the period 1870,2007. This analysis is based on HadISST1 and Reynolds OI.v2 SST analyses, in situ SST and deeper ocean temperature series, surface-air-temperature records for key points located around the Greenland coast, and examination of atmospheric pressure and geopotential height from NCEP/NCAR reanalysis. Second, we carried out a novel sensitivity experiment in which SSTs were perturbed as input to a regional climate model, and document the resulting effects on simulated Greenland climate and surface mass balance. We conclude that sea-surface/ocean temperature forcing is not sufficient to strongly influence precipitation/snow accumulation and melt/runoff of the ice sheet. Additional evidence from meteorological reanalysis suggests that high Greenland melt anomalies of summer 2007 are likely to have been primarily forced by anomalous advection of warm air masses over the ice sheet and to have therefore had a more remote atmospheric origin. However, there is a striking correspondence between ocean warming and dramatic accelerations and retreats of key Greenland outlet glaciers in both southeast and southwest Greenland during the late 1990s and early 2000s. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Estimation of temporal variation in splash detachment in two Japanese cypress plantations of contrasting age

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2010
    Y. Wakiyama
    Abstract To elucidate splash erosion processes under natural rainfall conditions, temporal variations in splash detachment were observed using a piezoelectric saltation sensor (H11B; Sensit Co., Portland, ND, USA). Preliminary laboratory tests of Sensit suggested that they were suitable for field observations. Field observations were conducted between July and September 2006 in 21- and 36-year-old Japanese cypress (Chamaecyparis obtusa) plantations with mean stand heights of 9·2,m and 17·4,m, respectively. Splash detachment (in g m,2) was measured seven times using splash cups, and raindrop kinetic energy (in J,m,2,mm,1) in both stands was measured using laser drop-sizing (LD) gauges. Sensit was installed to record saltation counts, which were converted to temporal data of splash detachment (splash rate; in g m,2 10,min,1) using the relationship between splash detachment and saltation counts. Surface runoff was monitored using runoff plots of 0·5,m width and 2·0,m length to obtain temporal data of flow depth (in millimeters). Both total splash detachment and raindrop kinetic energy were larger in the older stand. Increased splash rates per unit throughfall were found in both stands after rainless durations longer than approximately one day in both stands. However, a lower splash rate was found in the 21-year stand after rainfall events. During extreme rainstorms, the 21-year stand showed a low runoff rate and a decline in the splash rate, while the 36-year stand showed a higher splash rate and increased flow depth. The piezoelectric sensor proved to be a useful means to elucidate splash erosion processes in field conditions. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Effectiveness of grass strips in trapping suspended sediments from runoff

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2010
    Chengzhong Pan
    Abstract Little information is available concerning the performance of grass strips for erosion control from steep cropland. An experiment was conducted on 5-m-long grass strips with slopes of 3°,15° that were subjected to silt laden runoff and simulated rainfall, to investigate the sediment trapping processes. The grass strips had three treatments including intact grass control (C), no litter (dead grass material covering the soil surface was removed) (NL), and no litter or leaves (only 2,3,cm grass stems and roots were reserved) (NLL). Generally the grass strips had a high effectiveness in trapping sediment from steep cropland runoff. Sediment trapping efficiency (STE) decreased with increasing slope gradient, and even for a 15° slope, STE was still more than 40%. Most sediment deposited in the backwater region before each grass strips. The removal of grass litter or/and leaves had no significant influence on STE. The sediment median size (D50) in inflow was greater than that in outflow, and the difference (,D50) decreased with increasing slope. A positive power relationship between STE and ,D50 can be obtained. Grass strips were more effective in trapping sediments coarser than 10 or 25,µm, but sediments finer than 1,µm were more readily removed from runoff than particles in the range of 2 to approximately 10,µm. Grass litter had less influence on flow velocity than leaves because the deposited sediment partially covered the litter layer. Mean flow velocity and its standard deviation were negatively correlated with STE, and they can help make good estimation of STE. Results from this study should be useful in planting and managing forage grass to effectively conserve soil loss by runoff from steep slopes on the Loess Plateau of China. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Rainfall variability and hydrological and erosive response of an olive tree microcatchment under no-tillage with a spontaneous grass cover in Spain

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 7 2010
    E. V. Taguas
    Abstract Most studies on runoff and soil loss from olive orchards were performed on plots, despite the fact that measurements that examine a range of erosive processes on different scales are essential to evaluate the suitability of the use and soil management of this type of land. The main environmental limitations of much of the land used for olive orchards in the Mediterranean are the steep slopes and the shallow soil depth , and this was the case in the study area. Soil erosion and runoff over two hydrological years (2005,2006 and 2006,2007) were monitored in an olive orchard microcatchment of 6·1,ha under no-tillage with spontaneous grass in order to evaluate its hydrological and erosive behaviour. Moreover, soil parameters such as organic matter (%OM), bulk density (BD) and hydraulic saturated conductivity (Ks) were also examined in the microcatchment to describe management effects on hydrological balance and on erosive processes. In the study period, the results showed runoff coefficients of 6·0% in the first year and 0·9% in the second. The differences respond to the impact of two or three yearly maximum events which were decisive in the annual balances. On the event scale, although maximum rainfall intensity values had a big influence on peak flows and runoff, its importance on mean sediment concentrations and sediment discharges was difficult to interpret due to the likely control of grass cover on volume runoff and on soil protection. In the case of annual soil erosion, they were measured as 1·0,Mg,ha,1,yr,1 and 0·3,Mg,ha,1,yr,1. Both are lower than the tolerance values evaluated in Andalusia (Spain). These results support the implementation of no-tillage with spontaneous grass cover for sloping land, although the reduced infiltration conditions determined by Ks in the first horizon suggest grass should be allowed to grow not only in spring but also in autumn. In addition, specific measurements to control gullies, which have formed in the terraced area in the catchment, should be included since it is expected that they could be the main sources of sediments. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Vegetation and topographic controls on sediment deposition and storage on gully beds in a degraded mountain area

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 6 2009
    Armando Molina
    Abstract Active gully systems developed on highly weathered or loose parent material are an important source of runoff and sediment production in degraded areas. However, a decrease of land pressure may lead to a return of a partial vegetation cover, whereby gully beds are preferred recolonization spots. Although the current knowledge on the role of vegetation on reducing sediment production on slopes is well developed, few studies exist on the significance of restoring sediment transport pathways on the total sediment budget of degraded mountainous catchments. This study in the Ecuadorian Andes evaluates the potential of vegetation to stabilize active gully systems by trapping and retaining eroded sediment in the gully bed, and analyses the significance of vegetation restoration in the gully bed in reducing sediment export from degraded catchments. Field measurements on 138 gully segments located in 13 ephemeral steep gullies with different ground vegetation cover indicate that gully bed vegetation is the most important factor in promoting short-term (1,15 years) sediment deposition and gully stabilization. In well-vegetated gully systems ( , 30% of ground vegetation cover), 0.035 m3 m,1 of sediment is deposited yearly in the gully bed. Almost 50 per cent of the observed variance in sediment deposition volumes can be explained by the mean ground vegetation cover of the gully bed. The presence of vegetation in gully beds gives rise to the formation of vegetated buffer zones, which enhance short-term sediment trapping even in active gully systems in mountainous environments. Vegetation buffer zones are shown to modify the connectivity of sediment fluxes, as they reduce the transport efficiency of gully systems. First calculations on data on sediment deposition patterns in our study area show that gully bed deposition in response to gully bed revegetation can represent more than 25 per cent of the volume of sediment generated within the catchment. Our findings indicate that relatively small changes in landscape connectivity have the potential to create strong (positive) feedback loops between erosion and vegetation dynamics. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Evaluation of the PESERA model in two contrasting environments

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 5 2009
    F. Licciardello
    Abstract The performance of the Pan-European Soil Erosion Risk Assessment (PESERA) model was evaluated by comparison with existing soil erosion data collected in plots under different land uses and climate conditions in Europe. In order to identify the most important sources of error, the PESERA model was evaluated by comparing model output with measured values as well as by assessing the effect of the various model components on prediction accuracy through a multistep approach. First, the performance of the hydrological and erosion components of PESERA was evaluated separately by comparing both runoff and soil loss predictions with measured values. In order to assess the performance of the vegetation growth component of PESERA, the predictions of the model based on observed values of vegetation ground cover were also compared with predictions based on the simulated vegetation cover values. Finally, in order to evaluate the sediment transport model, predicted monthly erosion rates were also calculated using observed values of runoff and vegetation cover instead of simulated values. Moreover, in order to investigate the capability of PESERA to reproduce seasonal trends, the observed and simulated monthly runoff and erosion values were aggregated at different temporal scale and we investigated at what extend the model prediction error could be reduced by output aggregation. PESERA showed promise to predict annual average spatial variability quite well. In its present form, short-term temporal variations are not well captured probably due to various reasons. The multistep approach showed that this is not only due to unrealistic simulation of cover and runoff, being erosion prediction also an important source of error. Although variability between the investigated land uses and climate conditions is well captured, absolute rates are strongly underestimated. A calibration procedure, focused on a soil erodibility factor, is proposed to reduce the significant underestimation of soil erosion rates. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Concentrated flow erosion rates reduced through biological geotextiles

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2009
    T. Smets
    Abstract Soil erosion by concentrated flow can cause serious environmental damage. Erosion-control geotextiles have considerable potential for reducing concentrated flow erosion. However, limited data are available on the erosion-reducing potential of geotextiles. In this study, the effectiveness of three biological geotextiles in reducing soil losses during concentrated flow is investigated. Hereto, runoff was simulated in a concentrated flow flume, filled with an erodible sandy loam on three slope gradients (13·5, 27·0 and 41·5%). Treatments included three biological geotextiles (borassus, buriti and bamboo) and one bare soil surface. Darcy,Weisbach friction coefficients ranged from 0·01 to 2·84. The highest values are observed for borassus covered soil surfaces, followed by buriti, bamboo and bare soil, respectively. The friction coefficients are linearly correlated with geotextile thickness. For the specific experimental conditions of this study, borassus geotextiles reduced soil detachment rate on average to 56%, buriti geotextiles to 59% and bamboo geotextiles to 66% of the soil detachment rate for bare soil surfaces. Total flow shear stress was the hydraulic parameter best predicting soil detachment rate for bare and geotextile covered surfaces (R2 = 0·75,0·84, p <0·001, n = 12,15). The highest resistance against soil detachment was observed for the borassus covered soil surfaces, followed by buriti, bamboo and bare soil surfaces, respectively. Overall, biological geotextiles are less effective in controlling concentrated flow erosion compared with interrill erosion. Copyright © 2009 John Wiley & Sons, Ltd. [source]