Rock Matrix (rock + matrix)

Distribution by Scientific Domains


Selected Abstracts


Exceptionally preserved conulariids and an edrioasteroid from the Hunsrück Slate (Lower Devonian, SW Germany)

PALAEONTOLOGY, Issue 2 2010
HEYO VAN ITEN
Abstract:, Nineteen partial specimens of Conularia sp., together with an articulated agelacrinitid edrioasteroid and several discinid brachiopods, occur in close association with a probable biological substrate on a small slab of silty Hunsrück Slate (Lower Devonian, Emsian) from Bundenbach, Germany. Most of the conulariids occur in V-like pairs or in a single cluster of 12 specimens arranged in a fan-like radial pattern. Together with the edrioasteroid and (possibly) brachiopods, the conulariids probably were attached to the substrate in life and then were buried and possibly killed by a single influx of silty mud. The apertural end of many of the conulariids is partially covered by inwardly folded short lappets, which may have closed in response to rapid (but gentle) burial. Rock matrix in the apertural region of the peridermal cavity of nearly all of the conulariids exhibits irregular, variably dense concentrations of pyrite. The concentrations occur almost exclusively within the conulariids, where they probably formed as a result of the decay of retracted conulariid soft parts. Although the concentrations lack clearly defined anatomical features that can be unambiguously homologized with particular anatomical structures of any extant taxon, their form and distribution within the conulariids are consistent with the hypothesis that conulariids were polypoid scyphozoans. [source]


A comparison of cross-hole electrical and seismic data in fractured rock

GEOPHYSICAL PROSPECTING, Issue 2 2004
J.V. Herwanger
ABSTRACT Cross-hole anisotropic electrical and seismic tomograms of fractured metamorphic rock have been obtained at a test site where extensive hydrological data were available. A strong correlation between electrical resistivity anisotropy and seismic compressional-wave velocity anisotropy has been observed. Analysis of core samples from the site reveal that the shale-rich rocks have fabric-related average velocity anisotropy of between 10% and 30%. The cross-hole seismic data are consistent with these values, indicating that observed anisotropy might be principally due to the inherent rock fabric rather than to the aligned sets of open fractures. One region with velocity anisotropy greater than 30% has been modelled as aligned open fractures within an anisotropic rock matrix and this model is consistent with available fracture density and hydraulic transmissivity data from the boreholes and the cross-hole resistivity tomography data. However, in general the study highlights the uncertainties that can arise, due to the relative influence of rock fabric and fluid-filled fractures, when using geophysical techniques for hydrological investigations. [source]


Fracture Control of Ground Water Flow and Water Chemistry in a Rock Aquitard

GROUND WATER, Issue 5 2007
Timothy T. Eaton
There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/Ss) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies. [source]


Radon (222Rn) in Ground Water of Fractured Rocks: A Diffusion/Ion Exchange Model

GROUND WATER, Issue 4 2004
Warren W. Wood
Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion-exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42°56,N, 71°43,W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model. [source]


Multiple Sources of Metals of Mineralization in Lower Cambrian Black Shales of South China: Evidence from Geochemical and Petrographic Study

RESOURCE GEOLOGY, Issue 1 2008
Jan Pa
Abstract Black shales of the Lower Cambrian Niutitang Formation in southern China (Huangjiawan mine, Zunyi region, northern part of the Guizhou Province) host regionally distributed stratiform polymetallic Ni-Mo-platinum group elements (PGE)-Au phosphate- and sulfide-rich ores. These are confined to a ,0.2-m thick ore horizon composed of mineralized bodies of algal onkolites, phosphate nodules, and sulfide and shale clasts in a mineralized phosphate- and organic matter-rich matrix. Compared to footwall and hanging wall shales, the ore bed is strongly enriched in Ni (up to 100-fold), As (up to 97-fold), Mo (up to 95-fold), Sb (up to 67-fold), Rh (up to 49-fold), Cu (up to 37-fold), Pd (up to 33-fold), Ru (up to 24-fold), Zn (up to 23-fold), Pt (up to 21-fold), Ir (up to 15-fold), Co (up to 14-fold), and Pb (up to 13-fold). Even footwall and hanging wall black shales are significantly enriched by Mo (21-fold) and Ni (12-fold) but depleted in Cr in comparison to average Cambrian black shale. Organic matter is represented by separate accumulations dispersed in the rock matrix or as biotic bitumen droplets and veinlets in ore clasts. Similar organic carbon (Corg) values in an ore bed and enclosing footwall and hanging wall shales of little mineralization indicate that metal accumulation was not controlled only by biogenic productivity and organic matter accumulation rate. Evaporitic conditions during sedimentation of the basal part of the Niutitang Formation were documented by an occurrence of preserved Ni-, V-, Cr-, and Cu-enriched phosphate-rich hardground with halite and anhydrite pseudomorphs on the paleosurface of the underlying Neoproterozoic carbonates. Neoproterozoic black shales of the Doushantuo Formation are characterized by increased metal concentrations. Comparison of metal abundances in both hardground and Doushantuo black shales indicate that black shales could have become a source of metal-rich hardground during weathering. The polymetallic Ni-Mo-PGE sulfide-rich ore bed is interpreted to represent a remnant of shallow-water hardground horizon rich in metals, which originated in a sediment-starved, semi-restricted, seawater environment. During the Early Cambrian transgression an influx of fresh seawater and intensive evaporation, together with the hydrothermal enrichment of seawater in a semi-restricted basin, resulted in the formation of dense metalliferous brines; co-precipitation of metals together with phosphates and sulfides occurred at or above the oxic,anoxic sediment interface. Metal-enriched hardground was disintegrated by the action of waves or bottom currents and deposited in a deeper part of the anoxic basin. Contemporaneously with the formation of a polymetallic Ni-Mo-PGE-Au sulfide ore bed, economic sedimentary exhalative (SEDEX)-type barite deposits were forming in a stratigraphically and geotectonically similar setting. The results of geochemical study at the Shang Gongtang SEDEX-type Ba deposit indicate that concentrations of Ag, As, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V, Zn and other metals decrease from top of the barite body toward the hanging wall black shale. Lower Cambrian black shales of the Niutitang Formation above the barite body also display similar element abundances as Neoproterozoic black shales of the Doushantuo Formation, developed in the footwall of the barite body. But the geochemical composition of the sulfide layer is different from the Ni-Mo ore bed, showing only elevated Pb, Cu, Ni and Mo values. It is suggested that hydrothermal brines at Shang Gongtang might have leached metals from footwall Neoproterozoic sequences and became, after mixing with normal seawater, an additional source of Ag, Cr, Cu, Pb, Sb, Zn, Ni, PGE, V and other metals. [source]