Home About us Contact | |||
Rotor Speed (rotor + speed)
Selected AbstractsSpeed estimation of induction motor drive using d -axis slot harmonics and parameter identification methodELECTRICAL ENGINEERING IN JAPAN, Issue 2 2010Toshihiko Noguchi Abstract This paper describes a rotor speed estimation technique of an induction motor, which utlizes slot harmonics on the d -axis caused by permeance variation across the air gap. The frequency of the slot harmonics is a multiple of the actual rotor speed, and is proportional to the number of rotor slots. In order to extract the slot harmonics, a novel adaptive bandpass filter incorporating coordinate transformation is proposed, which is effective to estimate the rotor speed from 400 to 2000 rpm. This rotor speed estimation is applied to a field-oriented controller as well as a speed controller. In addition, performance improvement is carried out by compensating a motor parameter mismatch. Feasibility of the proposed technique is confirmed through several tests, using a prototype experimental setup. © 2010 Wiley Periodicals, Inc. Electr Eng Jpn, 171(2): 50,58, 2010; Published online in Wiley InterScience (www. interscience.wiley.com). DOI 10.1002/eej.20901 [source] Adaptive sensorless robust control of AC drives based on sliding mode control theoryINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 9 2007O. Barambones Abstract This paper focuses in the design of a new adaptive sensorless robust control to improve the trajectory tracking performance of induction motors. The proposed design employs the so-called vector (or field oriented) control theory for the induction motor drives, being the designed control law based on an integral sliding-mode algorithm that overcomes the system uncertainties. This sliding-mode control law incorporates an adaptive switching gain in order to avoid the need of calculating an upper limit for the system uncertainties. The proposed design also includes a new method in order to estimate the rotor speed. In this method, the rotor speed estimation error is presented as a first-order simple function based on the difference between the real stator currents and the estimated stator currents. The stability analysis of the proposed controller under parameter uncertainties and load disturbances is provided using the Lyapunov stability theory. The simulated results show, on the one hand that the proposed controller with the proposed rotor speed estimator provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to plant parameter variations and external load disturbances. Finally, experimental results show the performance of the proposed control scheme. Copyright © 2006 John Wiley & Sons, Ltd. [source] Improving low-density polyethylene/poly(ethylene terephthalate) blends with graft copolymersJOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2008D. E. El-Nashar Abstract Blends of low-density polyethylene (LDPE) and poly(ethylene terephthalate) (PET) were prepared with different weight compositions with a plasticorder at 240°C at a rotor speed of 64 rpm for 10 min. The physicomechanical properties of the prepared blends were investigated with special reference to the effects of the blend ratio. Graft copolymers, that is, LDPE-grafted acrylic acid and LDPE-grafted acrylonitrile, were prepared with ,-irradiation. The copolymers were melt-mixed in various contents (i.e., 3, 5, 7, and 9 phr) with a LDPE/PET blend with a weight ratio of 75/25 and used as compatibilizers. The effect of the compatibilizer contents on the physicomechanical properties and equilibrium swelling of the binary blend was investigated. With an increase in the compatibilizer content up to 7 phr, the blend showed an improvement in the physicomechanical properties and reduced equilibrium swelling in comparison with the uncompatibilized one. The addition of a compatibilizer beyond 7 phr did not improve the blend properties any further. The efficiency of the compatibilizers (7 phr) was also evaluated by studies of the phase morphology (scanning electron microscopy) and thermal properties (differential scanning calorimetry and thermogravimetric analysis). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] IMPROVED VIABILITY OF SPRAY DRIED BREWER'S YEAST BY USING STARCH (GRITS) AND MALTODEXTRIN AS PROCESSING AIDSJOURNAL OF FOOD PROCESS ENGINEERING, Issue 6 2000GUADALUPE LUNA-SOLANO ABSTRACT Active dry brewer's yeast was prepared by spray drying (Tout 50 and 60C). Addition of processing aids to the yeast cream was necessary in order to dry at these temperatures. Corn starch (grits) and maltodextrins (DE-6) two levels of additions (10 and 20%) were used as processing aids. Statistical analyses proved that processing aids concentration, air outlet temperature and rotor speed had significant effects on yeast viability. Dried samples could be preserved at least 4 months stored at 5 and 25C with a loss of 1 and 2 log cycles of viable cells, respectively. [source] Experimental and numerical investigation of the precipitation of barium sulfate in a rotating liquid film reactorAICHE JOURNAL, Issue 8 2009Shengchang Guo Abstract Precipitation of nanosized barium sulfate in a rotating liquid film reactor (RLFR) has been investigated experimentally and through simulations based on the computational fluid dynamics technique including the population balance equation coupled with the Navier,Stokes equations, renormalization group k,, model equations, and species transport equations. A comparative experiment was carried out involving conventional precipitation in a flask. The structure of the precipitate was identified by powder X-ray diffraction (PXRD), which showed that the crystals obtained using the RLFR were smaller in size than those obtained in the flask. Transmission electron microscopy (TEM) images demonstrated that the crystals produced by the two different processes had different morphologies. Further detailed experiments involving varying the operating parameters of the RLFR were performed to investigate the effects on crystal size distribution (CSD). Increasing the speed of the rotor in the RLFR in the range 1000,5000 rpm or increasing the rotor-stator gap in the range 0.1,0.5 mm resulted in a decrease in particle size and narrower particle size distributions. The simulation results suggested that turbulent effects and reaction processes in the effective reactor space were directly related to rotor speed and rotor-stator gap. The simulated volume weighted mean diameter and CSD of particles of barium sulfate were almost identical to the corresponding experimental results obtained using TEM and laser particle size analyzer. The effects of other parameters such as the Kolmogorov scale and competition between induction time and mixing time are also discussed. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Mechanical flower thinning improves the fruit quality of applesJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 5 2010Alexey A Solomakhin Abstract BACKGROUND: Apple ,Golden Delicious Reinders' and ,Gala Mondial' trees were mechanically blossom-thinned with 30,77 × g (300,480 rpm rotation) and 5 or 7.5 km h,1 vehicle speed to improve fruit quality, minimise leaf damage, reduce hand and chemical thinning and to prevent or overcome alternate bearing; adjacent untreated or manually thinned apple trees served as controls. RESULTS: Mechanical thinning (43 × g, 360 rpm, 5,7.5 km h,1) had a positive effect on fruit size (15% larger), firmness (8.4 in Gala vs. 7.6 kg cm,2 in the unthinned control), sweetness (124 vs. 117 g kg,1 sugar in the control), contained the largest malic acid content (4 g kg,1 vs. 3.4 g kg,1 in the control) and 17% more anthocyanin (normalised anthocyanin index = 0.8 in Gala vs. 0.7 in the control); fruit of Golden and Gala showed additionally advanced starch breakdown and ripened earlier. CONCLUSIONS: Since increases in rotor speed, viz. centrifugal force, versus increases in the vehicle speed resulted in opposing effects, an integrated coefficient of thinning (ICT) was devised with optimum values of 10,40 (at 43 × g, 5,7.5 km h,1), where an ICT > 50 led to tree damage and ICT < 8 led to sub-optimum thinning efficacy. Copyright © 2010 Society of Chemical Industry [source] Optimizing Melt-Processing Conditions for the Preparation of iPP/Fumed Silica Nanocomposites: Morphology, Mechanical and Gas Permeability PropertiesMACROMOLECULAR REACTION ENGINEERING, Issue 4 2007Alexandros Vassiliou Abstract A series of iPP/SiO2 nanocomposites, containing 1, 2.5, 5, 7.5, and 10 wt.-% fumed silica nanoparticles, were prepared by melt mixing in a twin screw co-rotating extruder. The effect of different extrusion parameters was evaluated. The size of aggregates increased with increase in SiO2 content and repetition of the mixing process improved the filler's dispersion. A similar effect was also exhibited by either increasing the rotor speed or the mixing temperature, with the latter being more pronounced at the ranges studied. The mechanical properties of the prepared nanocomposites were evaluated and various models used to explain the observed enhancements. However, only the three-phase model could provide some correlation with the experimental results. All nanocomposites displayed lower permeability to gases. [source] PANI,LDPE composites: Effect of blending conditionsPOLYMER COMPOSITES, Issue 1 2009M. Cote A composite based on polyaniline (PANI) and low density polyethylene (LDPE) with electrical conductivity was developed. Polyaniline was polymerized by chemical oxidation and doped with dodecyl-benzene-sulfonic acid (DBSA). PANI,LDPE composites were prepared via melt blending and the films were obtained by compression molding. The influence of three variables of the blending (temperature, [PANI], rotor speed) on conductivity, microstructure and mechanical properties of the composites was studied by means of statistical tools and a 23 experimental design. The results show that the PANI concentration is the most influential variable, which mainly affects the conductivity and the elongation at break of the composites. These changes are related to the microstructure of the composites. Statistically, the other variables don't show significant influence on conductivity and mechanical properties in the studied range. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers. [source] Performance evaluation of synthesized acrylic acid grafted polypropylene within CaCO3/polypropylene compositesPOLYMER COMPOSITES, Issue 2 2000F. Rahma A polymeric coupling agent acrylic acid grafted polypropylene (AAgPP) was synthesized and its efficiency in CaCO3/PP composite was investigated. The grafting of acrylic acid monomer (AA) onto polypropylene was performed using an internal mixer. The effect of peroxyde, acrylic acid monomer content, temperature and RPM was studied. A grafting reaction between the polypropylene and the acrylic acid was evidenced through FTIR, UV, DSC and MFI testing. The highest grafting yield was obtained at 0.85 phr peroxide and 5 phr acrylic acid. The selected mixing temperature was 200°C, the rotor speed 150 rpm and the residence time 5 min. The obtained coupling agent (AAgPP) was used with 30 wt% CaCO3 filled polypropylene. Strong interactions with the composite were observed. The effect of increasing the coupling agent content on Izod impact and tensile properties was investigated. A maximum in the above properties is attained at 15 wt% AAgPP. The most important effect is clearly shown in the Izod test. In fact, a threefold increase has been observed for either notched and untoched specimen. The 15 wt% AAgPP is considered to be a critical concentration for the composite considered. This corresonds to maximum interactions occurring between the matrix and the filler. SEM analysis clearly shows strong interactions between the filler and the matrix in the presence of acrylic acid grafted polypropylene. This is another proof of the efficiency of the synthesized AAgPP as a potential coupling agent for CaCO3 filled PP. [source] Computational Fluid Dynamics Analysis of Blade Tip Clearances on Hemodynamic Performance and Blood Damage in a Centrifugal Ventricular Assist DeviceARTIFICIAL ORGANS, Issue 5 2010Jingchun Wu Abstract An important challenge facing the design of turbodynamic ventricular assist devices (VADs) intended for long-term support is the optimization of the flow path geometry to maximize hydraulic performance while minimizing shear-stress-induced hemolysis and thrombosis. For unshrouded centrifugal, mixed-flow and axial-flow blood pumps, the complex flow patterns within the blade tip clearance between the lengthwise upper surface of the rotating impeller blades and the stationary pump housing have a dramatic effect on both the hydrodynamic performance and the blood damage production. Detailed computational fluid dynamics (CFD) analyses were performed in this study to investigate such flow behavior in blade tip clearance region for a centrifugal blood pump representing a scaled-up version of a prototype pediatric VAD. Nominal flow conditions were analyzed at a flow rate of 2.5 L/min and rotor speed of 3000 rpm with three blade tip clearances of 50, 100, and 200 µm. CFD simulations predicted a decrease in the averaged tip leakage flow rate and an increase in pump head and axial thrust with decreasing blade tip clearances from 200 to 50 µm. The predicted hemolysis, however, exhibited a unimodal relationship, having a minimum at 100 µm compared to 50 µm and 200 µm. Experimental data corroborate these predictions. Detailed flow patterns observed in this study revealed interesting fluid dynamic features associated with the blade tip clearances, such as the generation and dissipation of tip leakage vortex and its interaction with the primary flow in the blade-blade passages. Quantitative calculations suggested the existence of an optimal blade tip clearance by which hydraulic efficiency can be maximized and hemolysis minimized. [source] Inactivation of Food Spoilage Microorganisms by Hydrodynamic Cavitation to Achieve Pasteurization and Sterilization of Fluid FoodsJOURNAL OF FOOD SCIENCE, Issue 9 2007P.J. Milly ABSTRACT:, Hydrodynamic cavitation is the formation of gas bubbles in a fluid due to pressure fluctuations induced by mechanical means. Various high-acid (pH , 4.6) fluid foods were processed in a hydrodynamic cavitation reactor to determine if commercial sterility can be achieved at reduced processing temperatures. Sporicidal properties of the process were also tested on a low-acid (pH < 4.6) fluid food. Fluid foods were pumped under pressure into a hydrodynamic cavitation reactor and subjected to 2 rotor speeds and flow rates to achieve 2 designated exit temperatures. Thermal inactivation kinetics were used to determine heat-induced lethality for all organisms. Calcium-fortified apple juice processed at 3000 and 3600 rpm rotor speeds on the reactor went through a transient temperature change from 20 to 65.6 or 76.7 °C and the total process lethality exceeded 5-log reduction of Lactobacillus plantarum and Lactobacillus sakei cells, and Zygosaccharomyces bailii cells and ascospores. Tomato juice inoculated with Bacillus coagulans spores and processed at 3000 and 3600 rpm rotor speeds endured a transient temperature from 37.8 to 93.3 or 104.4 °C with viable CFU reductions of 0.88 and 3.10 log cycles, respectively. Skim milk inoculated with Clostridium sporogenes putrefactive anaerobe 3679 spores and processed at 3000 or 3600 rpm rotor speeds endured a transient temperature from 48.9 to 104.4 or 115.6 °C with CFU reductions of 0.69 and 2.84 log cycles, respectively. Utilizing hydrodynamic cavitation to obtain minimally processed pasteurized low-acid and commercially sterilized high-acid fluid foods is possible with appropriate process considerations for different products. [source] Experimental study of the hydraulic operation of an annular centrifugal contactor with various mixing vane geometriesAICHE JOURNAL, Issue 8 2010Kent E. Wardle Abstract The annular centrifugal contactor is a combination mixer/centrifuge that has been developed for solvent extraction processes for recycling used nuclear reactor fuel. The experimental observations presented were part of a simulation-focused research effort aimed at providing a more complete understanding of the fluid flow within these contactors to enable further advancements in design and operation of future units and greater confidence for use of such contactors in a variety of other solvent extraction applications. Laser doppler velocimetry (LDV), particle image velocimetry (PIV), pressure measurements, and high-speed video imaging for a range of flow rates and rotor speeds were performed to characterize the flow of water in the annular mixing region of the contactor using three different mixing vane geometries. It was found that the geometry of the mixing vanes has a significant impact on the annular liquid height and general flow in the contactor mixing zone. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] |