Home About us Contact | |||
Root Penetration (root + penetration)
Selected AbstractsCanopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain)GLOBAL CHANGE BIOLOGY, Issue 12 2004Francisco Lloret Abstract Climate change is likely to produce more frequent and longer droughts in the Mediterranean region, like that of 1994, which produced important changes in the Quercus ilex forests, with up to 76% of the trees showing complete canopy dieback. At the landscape level, a mosaic of responses to the drought was observed, linked to the distribution of lithological substrates. Damage to the dominant tree species (Q. ilex) and the most common understorey shrub (Erica arborea) was more noticeable on the compact substrates (breccia) than on the fissured ones (schist). This result was consistent with observations documenting deeper root penetration in schist than in breccia materials, allowing the plants growing on fissured substrates to use water from deeper soil levels. Smaller plants were more vulnerable to drought than larger plants in the trees, but not in the shrubs. Overall, Q. ilex was more affected than E. arborea. The resilience of the system was evaluated from the canopy recovery 1 year after the episode. Stump and crown resprouting was fairly extensive, but the damage pattern in relation to substrate, plant size, and species remained similar. The effect of recurrent drought episodes was studied on vegetation patches of Q. ilex located on mountain slopes and surrounded by bare rock. We observed that plants that resprouted weakly after a previous drought in 1985 were more likely to die or to produce poor regeneration in 1995 than plants that had resprouted vigorously. Vegetation patches located on the lower part of the slope were also less damaged than patches situated uphill. The study provides evidence of relevant changes in forest canopy as a consequence of extreme climate events. The distribution of this effect across the landscape is mediated by lithological substrate, causing patchy patterns. The results also support the hypothesis that recurrent droughts can produce a progressive loss of resilience, by depleting the ability of surviving plants to regenerate. [source] Semiarid land rehabilitation by direct drilling in the South Island, New Zealand,plant species and establishment technologyLAND DEGRADATION AND DEVELOPMENT, Issue 5 2004B. J. Wills Abstract Large areas of the east coast and inland basins of the South Island, New Zealand, are affected by periodic drought and/or semiarid climatic conditions, particularly during cyclic El Niño climatic events. The severity of these environmental conditions places great stress on introduced and native pasture species and frequently results in poor establishment of new pastures using standard drilling techniques. The objective of this study was to determine effective, practical means of rehabilitating semiarid land (about 470,mm annual rainfall) on a site in Central Otago. A comparison of two direct drilling methods, a novel strip-seeder drill and a standard hoe-coulter drill, was conducted in a trial initiated during spring 1998. Five drought-tolerant forage species were established: wheatgrass (Thinopyron intermedium), tall oat grass (Arrhenatherum elatius), birdsfoot trefoil (Lotus corniculatus), hairy dorycnium (Dorycnium hirsutum) and bluebush (Kochia prostrata). For the 2000/2001 growing season, species established with the strip-seeder drill had an overall mean herbage biomass of 235,g,m,,2,, three-times that for the hoe-coulter drill (77,g,m,,2,, P,<,0·001). Differences in herbage biomass between species were observed, with hairy dorycnium (mean 328,g,m,,2,) producing significantly (P,<,0·001) more herbage biomass than the other species. After the third spring, the percentage ground cover recorded from transects across the strip-seeder drill plots (cf. the hoe-coulter drill) was: wheatgrass,41,per,cent (10,per,cent); tall oat grass,44,per,cent (25,per,cent); birdsfoot trefoil,25,per,cent (5,per,cent); hairy dorycnium,50,per,cent (19,per,cent); and bluebush,4,per,cent (0,per,cent). The native plant content of the resident vegetation was reduced as a result of the drilling treatments and also when fertilizer was added to undistrubed pasture. The strip-seeder drill is capable of providing superior plant growth on dryland sites even during adverse drought conditions. It produces a furrow approximately 16,cm wider than the hoe-coulter drill, exerts a greater shattering effect on the soil structure and places fertilizer at depth. It is suggested that this assists plant establishment by providing good seedling protection from wind and sun, and subsequent plant growth by allowing easier root penetration to the subsoil where nutrients and moisture are available. Copyright © 2004 John Wiley & Sons, Ltd. [source] Does soil nitrogen influence growth, water transport and survival of snow gum (Eucalyptus pauciflora Sieber ex Sprengel.) under CO2 enrichment?PLANT CELL & ENVIRONMENT, Issue 5 2009BRIAN J. ATWELL ABSTRACT Eucalyptus pauciflora Sieber ex Sprengel. (snow gum) was grown under ambient (370 µL L,1) and elevated (700 µL L,1) atmospheric [CO2] in open-top chambers (OTCs) in the field and temperature-controlled glasshouses. Nitrogen applications to the soil ranged from 0.1 to 2.75 g N per plant. Trees in the field at high N levels grew rapidly during summer, particularly in CO2 -enriched atmosphere, but suffered high mortality during summer heatwaves. Generally, wider and more numerous secondary xylem vessels at the root,shoot junction in CO2 -enriched trees conferred fourfold higher below-ground hydraulic conductance. Enhanced hydraulic capacity was typical of plants at elevated [CO2] (in which root and shoot growth was accelerated), but did not result from high N supply. However, because high rates of N application consistently made trees prone to dehydration during heatwaves, glasshouse studies were required to identify the effect of N nutrition on root development and hydraulics. While the effects of elevated [CO2] were again predominantly on hydraulic conductivity, N nutrition acted specifically by constraining deep root penetration into soil. Specifically, 15,40% shallower root systems supported marginally larger shoot canopies. Independent changes to hydraulics and root penetration have implications for survival of fertilized trees under elevated atmospheric [CO2], particularly during water stress. [source] Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from rootsPLANT CELL & ENVIRONMENT, Issue 1 2003T. D. COLMER ABSTRACT Internal transport of gases is crucial for vascular plants inhabiting aquatic, wetland or flood-prone environments. Diffusivity of gases in water is approximately 10 000 times slower than in air; thus direct exchange of gases between submerged tissues and the environment is strongly impeded. Aerenchyma provides a low-resistance internal pathway for gas transport between shoot and root extremities. By this pathway, O2 is supplied to the roots and rhizosphere, while CO2, ethylene, and methane move from the soil to the shoots and atmosphere. Diffusion is the mechanism by which gases move within roots of all plant species, but significant pressurized through-flow occurs in stems and rhizomes of several emergent and floating-leaved wetland plants. Through-flows can raise O2 concentrations in the rhizomes close to ambient levels. In general, rates of flow are determined by plant characteristics such as capacity to generate positive pressures in shoot tissues, and resistance to flow in the aerenchyma, as well as environmental conditions affecting leaf-to-air gradients in humidity and temperature. O2 diffusion in roots is influenced by anatomical, morphological and physiological characteristics, and environmental conditions. Roots of many (but not all) wetland species contain large volumes of aerenchyma (e.g. root porosity can reach 55%), while a barrier impermeable to radial O2 loss (ROL) often occurs in basal zones. These traits act synergistically to enhance the amount of O2 diffusing to the root apex and enable the development of an aerobic rhizosphere around the root tip, which enhances root penetration into anaerobic substrates. The barrier to ROL in roots of some species is induced by growth in stagnant conditions, whereas it is constitutive in others. An inducible change in the resistance to O2 across the hypodermis/exodermis is hypothesized to be of adaptive significance to plants inhabiting transiently waterlogged soils. Knowledge on the anatomical basis of the barrier to ROL in various species is scant. Nevertheless, it has been suggested that the barrier may also impede influx of: (i) soil-derived gases, such as CO2, methane, and ethylene; (ii) potentially toxic substances (e.g. reduced metal ions) often present in waterlogged soils; and (iii) nutrients and water. Lateral roots, that remain permeable to O2, may be the main surface for exchange of substances between the roots and rhizosphere in wetland species. Further work is required to determine whether diversity in structure and function in roots of wetland species can be related to various niche habitats. [source] The effect of soil compaction on germination and early growth of Eucalyptus albens and an exotic annual grassAUSTRAL ECOLOGY, Issue 6 2009ALISON K. SKINNER Abstract Most agricultural land has been compacted to some degree by heavy machinery or livestock trampling. This legacy is expected to influence the success of tree seedling recruits in farmland areas where natural regeneration is being encouraged. We investigated the impact of soil compaction on seedlings of a woodland eucalypt (Eucalyptus albens) and an annual grass competitor (Vulpia myuros) in a laboratory experiment. Replicate soil cores were created at five bulk density levels; 1.0, 1.1, 1.2, 1.3 or 1.4 Mg m,3 with a soil water content of 20%. The depth of root penetration declined linearly with increasing bulk density, resulting in a decrease in root depth of around 75% in the most compacted soil compared with the least compacted soil for both species. Shoot length and primary root length did not vary between soil bulk density levels for either species, but seedlings responded to increasing levels of compaction with oblique (non-vertical) root growth. Results suggest that young seedlings of both E. albens and V. myuros will be more susceptible to surface drying in compacted than uncompacted soils and therefore face a greater risk of desiccation during the critical months following germination. Any competitive advantage that V. myuros may have over E. albens is not evident in differential response to soil compaction. [source] |