Root Cultures (root + culture)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Root Cultures

  • hairy root culture


  • Selected Abstracts


    Intrinsic Oxygen Use Kinetics of Transformed Plant Root Culture

    BIOTECHNOLOGY PROGRESS, Issue 3 2001
    Patrick T. Asplund
    Root meristem oxygen uptake, root tip extension rate, and specific growth rate are assessed as a function of dissolved oxygen level for three transformed root cultures. The influence of hydrodynamic boundary layer was considered for all measurements to permit correlation of oxygen-dependent kinetics with the concentration of oxygen at the surface of the root meristem. Oxygen uptake rate is shown to be saturated at ambient conditions, and a saturation level of approximately 300 ,mole O2/(cm3 tissue·hr) was observed for all three of these morphologically diverse root types. In nearly all cases, the observation of a minimum oxygen pressure, below which respiration, extension, or root growth would not occur, could be accounted for as a boundary layer mass transfer resistance. The critical oxygen pressure below which respiration declines is below saturated ambient oxygen conditions. In contrast, critical oxygen pressures for root tip extension were much higher; extension was nearly linear for the two thicker root types (Hyoscyamus muticus, henbain; Solanum tuberosum, potato) above ambient oxygen levels. The performance of the thinnest root, Brassica juncea (Indian mustard) was consistent with reduced internal limitations for oxygen transport. Extension rates did not correlate with biomass accumulation. The fastest growing henbain culture (, = 0.44 day,1) displayed the slowest extension rate (0.16 mm/hr), and the slowest growing mustard culture (, = 0.22 day,1) had the fastest tip extension rate (0.3 mm/hr). This apparent paradox is explained in terms of root branching patterns, where the root branching ratio is shown to be dependent upon the oxygen-limited mersitem extension rate. The implications of these observations on the performance of root culture in bioreactors is discussed. [source]


    Hairy Root Culture in a Liquid-Dispersed Bioreactor: Characterization of Spatial Heterogeneity

    BIOTECHNOLOGY PROGRESS, Issue 3 2000
    Gary R. C. Williams
    A liquid-dispersed reactor equipped with a vertical mesh cylinder for inoculum support was developed for culture of Atropa belladonna hairy roots. The working volume of the culture vessel was 4.4 L with an aspect ratio of 1.7. Medium was dispersed as a spray onto the top of the root bed, and the roots grew radially outward from the central mesh cylinder to the vessel wall. Significant benefits in terms of liquid drainage and reduced interstitial liquid holdup were obtained using a vertical rather than horizontal support structure for the biomass and by operating the reactor with cocurrent air and liquid flow. With root growth, a pattern of spatial heterogeneity developed in the vessel. Higher local biomass densities, lower volumes of interstitial liquid, lower sugar concentrations, and higher root atropine contents were found in the upper sections of the root bed compared with the lower sections, suggesting a greater level of metabolic activity toward the top of the reactor. Although gas-liquid oxygen transfer to the spray droplets was very rapid, there was evidence of significant oxygen limitations in the reactor. Substantial volumes of non-free-draining interstitial liquid accumulated in the root bed. Roots near the bottom of the vessel trapped up to 3,4 times their own weight in liquid, thus eliminating the advantages of improved contact with the gas phase offered by liquid-dispersed culture systems. Local nutrient and product concentrations in the non-free-draining liquid were significantly different from those in the bulk medium, indicating poor liquid mixing within the root bed. Oxygen enrichment of the gas phase improved neither growth nor atropine production, highlighting the greater importance of liquid-solid compared with gas-liquid oxygen transfer resistance. The absence of mechanical or pneumatic agitation and the tendency of the root bed to accumulate liquid and impede drainage were identified as the major limitations to reactor performance. Improved reactor operating strategies and selection or development of root lines offering minimal resistance to liquid flow and low liquid retention characteristics are possible solutions to these problems. [source]


    Biotransformation of 4-Hydroxybenzen Derivatives by Hairy Root Cultures of Polygonum multiflorum Thunb.

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 2 2007
    Chun-Yan Yan
    Abstract The biotransformation of four 4-hydroxybenzen derivatives (1,4-benzenediol (compound 1), 4-hydroxybenzaldehyde (compound 2), 4-hydroxybenzyl alcohol (compound 3) and 4-hydroxybenzoic acid (compound 4)) by the hairy root cultures of Polygonum multiflorum Thunb. as a new biocatalyst was investigated. It was found that the substrates were transformed to their corresponding glucosides, 4-hydroxyphenyl ,- D -glucopyranoside (arbutin, compound 1a), 4-hydroxymethylphenyl ,- D -glucopyranoside (gastrodin, compounds 2a, 3a) and 4-carboxyphenyl ,- D -glucopyranoside (compound 4a), respectively. In the meantime, the hairy roots of P. multiflorum were able to stereoselectively and regioselectively glucosylate phenolic hydroxyl groups of compounds 1,4, but the cultures could not glucosylate the aldehyde group of compound 2 or the benzylic hydroxyl group of compound 3, and no glucosyl esterification of carboxyl groups of compound 4 was detected. On the other hand, the result also showed that the hairy roots of P. multiflorum were able to reduce the 4-hydroxybenzaldehyde to its corresponding alcohol. This is the first report that substrate 4 has been converted into its ,- D -glucopyranoside by a plant biotransformation system. [source]


    Expression of tropane alkaloids in the hairy root culture of Atropa acuminata substantiated by DART mass spectrometric technique

    BIOMEDICAL CHROMATOGRAPHY, Issue 8 2008
    Suchitra Banerjee
    Abstract Agrobacterium rhizogenes -mediated ,hairy root' cultures were established in Atropa acuminata. The chemical profiling of the hairy roots was carried out by a new mass spectrometric technique, direct analysis in real time (DART). The intact hairy roots were directly analyzed by holding them in the gap between the DART ion source and mass spectrometer. Two alkaloids, atropine and scopolamine, were characterized. The structural confirmation of the two alkaloids was made through their accurate molecular formula determinations. This is the first report of establishing hairy roots in A. acuminata as well as application of the DART technique for the chemical profiling of its hairy roots. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Development of Auxotrophic Agrobacterium tumefaciens for Gene Transfer in Plant Tissue Culture

    BIOTECHNOLOGY PROGRESS, Issue 3 2004
    Jason I. Collens
    Auxotrophic strains of Agrobacterium tumefaciens were generated for use in liquid co-culture with plant tissue for transient gene expression. Twenty-one auxotrophs were recovered from 1,900 tetracycline-resistant insertional mutants generated with a suicide vector transposon mutagenesis system. Twelve of these auxotrophs were characterized on a nutrient matrix. Isolates were screened for growth in plant cell and root culture, and three auxotrophs were identified that had limited growth: adenine (ade-24), leucine (leu-27), and cysteine (cys-32). Ade-24 displayed poor T-DNA delivery in a transient expression test delivering GUS from a binary vector, while cys-32 displayed the best ability to deliver DNA of these three auxotrophs. The growth yield of cys-32 on cysteine was assessed to provide a quantitative basis for co-culture nutrient supplementation. The utility of cys-32 for delivering T-DNA to plant tissues is demonstrated, where an 85-fold enhancement in GUS expression over wild-type A. tumefacienswas achieved. [source]


    Intrinsic Oxygen Use Kinetics of Transformed Plant Root Culture

    BIOTECHNOLOGY PROGRESS, Issue 3 2001
    Patrick T. Asplund
    Root meristem oxygen uptake, root tip extension rate, and specific growth rate are assessed as a function of dissolved oxygen level for three transformed root cultures. The influence of hydrodynamic boundary layer was considered for all measurements to permit correlation of oxygen-dependent kinetics with the concentration of oxygen at the surface of the root meristem. Oxygen uptake rate is shown to be saturated at ambient conditions, and a saturation level of approximately 300 ,mole O2/(cm3 tissue·hr) was observed for all three of these morphologically diverse root types. In nearly all cases, the observation of a minimum oxygen pressure, below which respiration, extension, or root growth would not occur, could be accounted for as a boundary layer mass transfer resistance. The critical oxygen pressure below which respiration declines is below saturated ambient oxygen conditions. In contrast, critical oxygen pressures for root tip extension were much higher; extension was nearly linear for the two thicker root types (Hyoscyamus muticus, henbain; Solanum tuberosum, potato) above ambient oxygen levels. The performance of the thinnest root, Brassica juncea (Indian mustard) was consistent with reduced internal limitations for oxygen transport. Extension rates did not correlate with biomass accumulation. The fastest growing henbain culture (, = 0.44 day,1) displayed the slowest extension rate (0.16 mm/hr), and the slowest growing mustard culture (, = 0.22 day,1) had the fastest tip extension rate (0.3 mm/hr). This apparent paradox is explained in terms of root branching patterns, where the root branching ratio is shown to be dependent upon the oxygen-limited mersitem extension rate. The implications of these observations on the performance of root culture in bioreactors is discussed. [source]


    Biotransformation of 4-Hydroxybenzen Derivatives by Hairy Root Cultures of Polygonum multiflorum Thunb.

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 2 2007
    Chun-Yan Yan
    Abstract The biotransformation of four 4-hydroxybenzen derivatives (1,4-benzenediol (compound 1), 4-hydroxybenzaldehyde (compound 2), 4-hydroxybenzyl alcohol (compound 3) and 4-hydroxybenzoic acid (compound 4)) by the hairy root cultures of Polygonum multiflorum Thunb. as a new biocatalyst was investigated. It was found that the substrates were transformed to their corresponding glucosides, 4-hydroxyphenyl ,- D -glucopyranoside (arbutin, compound 1a), 4-hydroxymethylphenyl ,- D -glucopyranoside (gastrodin, compounds 2a, 3a) and 4-carboxyphenyl ,- D -glucopyranoside (compound 4a), respectively. In the meantime, the hairy roots of P. multiflorum were able to stereoselectively and regioselectively glucosylate phenolic hydroxyl groups of compounds 1,4, but the cultures could not glucosylate the aldehyde group of compound 2 or the benzylic hydroxyl group of compound 3, and no glucosyl esterification of carboxyl groups of compound 4 was detected. On the other hand, the result also showed that the hairy roots of P. multiflorum were able to reduce the 4-hydroxybenzaldehyde to its corresponding alcohol. This is the first report that substrate 4 has been converted into its ,- D -glucopyranoside by a plant biotransformation system. [source]


    Hairy Root and Its Application in Plant Genetic Engineering

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 2 2006
    Zhi-Bi Hu
    Abstract Agrobacterium rhizogenes Conn. causes hairy root disease in plants. Hairy root-infected A. rhizogenes is characterized by a high growth rate and genetic stability. Hairy root cultures have been proven to be an efficient means of producing secondary metabolites that are normally biosynthesized in roots of differentiated plants. Furthermore, a transgenic root system offers tremendous potential for introducing additional genes along with the Ri plasmid, especially with modified genes, into medicinal plant cells with A. rhizogenes vector systems. The cultures have turned out to be a valuable tool with which to study the biochemical properties and the gene expression profile of metabolic pathways. Moreover, the cultures can be used to elucidate the intermediates and key enzymes involved in the biosynthesis of secondary metabolites. The present article discusses various applications of hairy root cultures in plant genetic engineering and potential problems associated with them. (Managing editor: Wei Wang) [source]


    Simultaneous quantification of eudesmanolides and thymol derivatives from tissues of Inula helenium and I. royleana by reversed-phase high-performance liquid Chromatography

    PHYTOCHEMICAL ANALYSIS, Issue 3 2006
    Anna Stojakowska
    Abstract A simple and rapid isocratic reversed-phase high-performance liquid chromatographic method for the quantification of alantolactone/isoalantolactone and three thymol derivatives in roots and root cultures of Inula helenium and I. royleana has been developed. The method could be applied to screen raw materials in search for highly productive plants and in vitro cultures. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Functional importance of the family 1 glucosyltransferase UGT72B1 in the metabolism of xenobiotics in Arabidopsis thaliana

    THE PLANT JOURNAL, Issue 4 2005
    Melissa Brazier-Hicks
    Summary The Arabidopsis type 1 UDP-glucose-dependent glucosyltransferase UGT72B1 is highly active in conjugating the persistent pollutants 3,4-dichloroaniline (DCA) and 2,4,5-trichlorophenol (TCP). To determine its importance in detoxifying xenobiotics in planta, mutant plants where the respective gene has been disrupted by T-DNA insertion have been characterized. Extracts from the knockout ugt72B1 plants showed radically reduced conjugating activity towards DCA and TCP and the absence of immunodetectable UGT72B1 protein. In contrast, activities towards phenolic natural products were unaffected. When aseptic root cultures were fed [14C]-DCA, compared with wild types, the ugt72B1 plants showed a reduced rate of uptake of the xenobiotic and very little metabolism to soluble DCA-glucose or associated polar conjugates. Instead, the knockouts accumulated non-extractable radioactive residues, most probably associated with lignification. When the feeding studies were carried out with [14C]-TCP, rates and routes of metabolism were identical in the wild type and knockouts, with TCP-glucoside a major product in both cases. Similar differential effects on the metabolism of DCA and TCP were obtained in whole plant studies with wild type and ugt72B1 mutants, demonstrating that while UGT72B1 had a central role in metabolizing chloroanilines in Arabidopsis, additional UGTs could compensate for the conjugation of TCP in the knockout. TCP was equally toxic to wild type and ugt72B1 plants, while surprisingly, the knockouts were less sensitive to DCA. From this it was concluded that the glucosylation of DCA may not be as effective in xenobiotic detoxification as bound-residue formation. [source]


    Oxytetracycline inactivation by putative reactive oxygen species released to nutrient medium of Helianthus annuus hairy root cultures,

    BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2005
    Ninad P. Gujarathi
    Abstract When subjected to stress, plants produce reactive oxygen species (ROS) as a part of the defense response. The oxidative response is also used to degrade organic pollutants. Hairy roots of Helianthus annuus (sunflower) are shown to oxidize oxytetracycline (OTC) through the action of the ROS released to the nutrient medium by the hairy root cultures. Methyl jasmonate (MeJA) elicits ROS formation in the hairy root cultures. The activities of the antioxidant enzymes, ascorbate peroxidase (APX), catalase (CAT), and guaiacol peroxidase (GPX), are reported for hairy root cultures treated with increasing concentrations of MeJA. A bioassay using Enterococcus hirae as the test microorganism demonstrates the root-catalyzed oxidation process results in conversion of OTC into product(s) devoid of antibiotic activity. Direct evidence for putative ROS oxidation of OTC is obtained by mass spectrometry (MS) and HPLC/MS showing first quinone formation followed possibly by ring cleavage, which disrupts UV absorption and destroys antibiotic activity. © 2005 Wiley Periodicals, Inc. [source]


    Alkaloid production in Vernonia cinerea: Callus, cell suspension and root cultures

    BIOTECHNOLOGY JOURNAL, Issue 8 2007
    Priti Maheshwari
    Abstract Fast-growing callus, cell suspension and root cultures of Vernonia cinerea, a medicinal plant, were analyzed for the presence of alkaloids. Callus and root cultures were established from young leaf explants in Murashige and Skoog (MS) basal media supplemented with combinations of auxins and cytokinins, whereas cell suspension cultures were established from callus cultures. Maximum biomass of callus, cell suspension and root cultures were obtained in the medium supplemented with 1 mg/L ,-naphthaleneacetic acid (NAA) and 5 mg/L benzylaminopurine (BA), 1.0 mg/L NAA and 0.1 mg/L BA and 1.5 mg/L NAA, respectively. The 5-week-old callus cultures resulted in maximum biomass and alkaloid contents (750 ,g/g). Cell suspension growth and alkaloid contents were maximal in 20-day-old cultures and alkaloid contents were 1.15 mg/g. A 0.2-g sample of root tissue regenerated in semi-solid medium upon transfer to liquid MS medium containing 1.5 mg/L NAA regenerated a maximum increase in biomass of 6.3-fold over a period of 5 weeks. The highest root growth and alkaloid contents of 2 mg/g dry weight were obtained in 5-week-old cultures. Maximum alkaloid contents were obtained in root cultures in vitro compared to all others including the alkaloid content of in vivo obtained with aerial parts and roots (800 ,g/g and 1.2 mg/g dry weight, respectively) of V. cinerea. [source]


    Assessing the limitations to terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy root cultures through gene expression profiling and precursor feeding

    BIOTECHNOLOGY PROGRESS, Issue 5 2009
    Sheba Goklany
    Abstract The production of pharmaceutically important terpenoid indole alkaloids (TIAs) from Catharanthus roseus is partly regulated at the transcriptional level. In this study, limitations in TIA biosynthesis from C. roseus hairy root cultures were assessed through gene expression profiling and precursor feeding. The transcript levels of key TIA pathway genes (G10h, Tdc, Str, and Sgd) and metabolite levels associated with the TIA pathway (tryptamine, loganin, secologanin, strictosidine, ajmalicine, serpentine, and tabersonine) were monitored using quantitative RT-PCR and HPLC, respectively. In cultures elicited with methyl jasmonate (250 ,M MeJA on day 21), G10h, Tdc, Str, and Sgd expression increased by 9.1, 3.1, 6.7, and 8.3-fold, respectively, after 24 h. Up-regulation of gene expression was followed by a 160, 440, and 420% increase in strictosidine, ajmalicine, and tabersonine levels, respectively, after 5 days. Precursors loganin, tryptamine, or their combination were fed to noninduced and MeJA-induced cultures to complement the above studies. TIA production was not significantly enhanced in either noninduced or MeJA-induced cultures with precursor feeding. In noninduced cells, steps downstream of loganin and tryptamine were limiting (SLS, STR, or SGD) because either loganin or tryptamine accumulated in the cells with precursor feeding. These bottlenecks were partly overcome in MeJA-induced cultures as the expression of Str and Sgd genes and TIA production increased. However, secologanin accumulated in MeJA-induced cultures with precursor feeding, suggesting that STR was likely limiting under MeJA-induced conditions. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]


    Heterologous Expression of Vitreoscilla Hemoglobin (VHb) and Cultivation Conditions Affect the Alkaloid Profile of Hyoscyamus muticus Hairy Roots

    BIOTECHNOLOGY PROGRESS, Issue 2 2006
    Annika Wilhelmson
    Fast-growing hairy root cultures of Hyoscyamus muticus induced by Agrobacterium rhizogenes offer a potential production system for tropane alkaloids. Oxygen deficiency has been shown to limit growth and biomass accumulation of hairy roots, whereas little experimental data is available on the effect of oxygen on alkaloid production. We have investigated the effect of Vitreoscilla hemoglobin (VHb) expression and cultivation conditions on the complete alkaloid profile of H. muticus hairy roots in shake flasks and in a laboratory scale bioreactor. We optimized the growth medium composition and studied the effects of sucrose, ammonium, nitrate, and phosphate on growth and alkaloid production. Maximum biomass accumulation was achieved with the highest and maximum hyoscyamine content with the lowest sucrose concentration. The optimum nitrate concentration for growth was higher for the VHb line than the control. Neither VHb expression nor aeration improved the hyoscyamine content significantly, thus suggesting that hyoscyamine biosynthesis is not limited by oxygen availability. Interestingly, the effect of VHb expression on the alkaloid profile was slightly different from that of aeration. VHb expression did not affect the concentrations of cuscohygrine, which was increased by aeration. Therefore, the effect of VHb is probably not related only to its ability to increase the intracellular effective oxygen concentration. [source]


    Intrinsic Oxygen Use Kinetics of Transformed Plant Root Culture

    BIOTECHNOLOGY PROGRESS, Issue 3 2001
    Patrick T. Asplund
    Root meristem oxygen uptake, root tip extension rate, and specific growth rate are assessed as a function of dissolved oxygen level for three transformed root cultures. The influence of hydrodynamic boundary layer was considered for all measurements to permit correlation of oxygen-dependent kinetics with the concentration of oxygen at the surface of the root meristem. Oxygen uptake rate is shown to be saturated at ambient conditions, and a saturation level of approximately 300 ,mole O2/(cm3 tissue·hr) was observed for all three of these morphologically diverse root types. In nearly all cases, the observation of a minimum oxygen pressure, below which respiration, extension, or root growth would not occur, could be accounted for as a boundary layer mass transfer resistance. The critical oxygen pressure below which respiration declines is below saturated ambient oxygen conditions. In contrast, critical oxygen pressures for root tip extension were much higher; extension was nearly linear for the two thicker root types (Hyoscyamus muticus, henbain; Solanum tuberosum, potato) above ambient oxygen levels. The performance of the thinnest root, Brassica juncea (Indian mustard) was consistent with reduced internal limitations for oxygen transport. Extension rates did not correlate with biomass accumulation. The fastest growing henbain culture (, = 0.44 day,1) displayed the slowest extension rate (0.16 mm/hr), and the slowest growing mustard culture (, = 0.22 day,1) had the fastest tip extension rate (0.3 mm/hr). This apparent paradox is explained in terms of root branching patterns, where the root branching ratio is shown to be dependent upon the oxygen-limited mersitem extension rate. The implications of these observations on the performance of root culture in bioreactors is discussed. [source]


    Expression of tropane alkaloids in the hairy root culture of Atropa acuminata substantiated by DART mass spectrometric technique

    BIOMEDICAL CHROMATOGRAPHY, Issue 8 2008
    Suchitra Banerjee
    Abstract Agrobacterium rhizogenes -mediated ,hairy root' cultures were established in Atropa acuminata. The chemical profiling of the hairy roots was carried out by a new mass spectrometric technique, direct analysis in real time (DART). The intact hairy roots were directly analyzed by holding them in the gap between the DART ion source and mass spectrometer. Two alkaloids, atropine and scopolamine, were characterized. The structural confirmation of the two alkaloids was made through their accurate molecular formula determinations. This is the first report of establishing hairy roots in A. acuminata as well as application of the DART technique for the chemical profiling of its hairy roots. Copyright © 2008 John Wiley & Sons, Ltd. [source]