Home About us Contact | |||
Robust Methodology (robust + methodology)
Selected AbstractsDetermination of the seismic moment tensor for local events in the South Shetland Islands and Bransfield StraitGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2006M. Guidarelli SUMMARY Six events with magnitude between 3 and 5.6 have been analysed based on regional waveforms recorded by the temporal Seismic Experiment in Patagonia and Antarctica seismic broad-band network in the Bransfield Strait and the South Shetland Islands in the period 1997,1998. The source parameters have been retrieved using a robust methodology (INDirect PARametrization) to stabilize the inversion of a limited number of noisy records. This methodology is particularly important in oceanic environments, where the presence of seismic noise and the small number of stations makes it difficult to analyse small magnitude events. The source mechanisms obtained are quite variable but consistent with the active tectonic processes and the complicated structure of the South Shetland Island region. [source] Modified passive capillary samplers for collecting samples of snowmelt infiltration for stable isotope analysis in remote, seasonally inaccessible watersheds 1: laboratory evaluationHYDROLOGICAL PROCESSES, Issue 7 2010Marty D. Frisbee Abstract Snowmelt is the most significant source of runoff generation and recharge in many of the mountainous watersheds worldwide and this is especially true in the southwestern United States. Yet, the isotopic and geochemical composition of the soil,meltwater endmember remains poorly constrained. Using the isotopic compositions of snow and snowmelt runoff samples taken from the landscape surface as proxies for soil,meltwater endmembers is problematic since they are typically not representative of the actual composition of soil meltwater. Furthermore, the applicability of current methodologies to collect the isotopic composition of meltwater is limited because of the remote and often seasonally inaccessible nature of the terrain where snowpacks develop. Therefore, a robust methodology requiring little maintenance or monitoring is desirable. A lab experiment was conducted to determine the suitability of using a modified passive capillary sampler (M-PCAPS) design to collect snowmelt infiltration for isotopic analysis. Passive capillary samplers are constructed from fiberglass wicks that can be installed in the soil to sample vadose-zone waters under a wide range of matric potentials and require little maintenance. Results from this lab experiment indicate that the wicking process associated with M-PCAPS does not fractionate water but certain precautions are necessary to prevent exchange between the wick and the atmosphere. In this experiment, M-PCAPS effectively tracked the changing isotopic composition of a soil reservoir undergoing evaporation. Therefore, M-PCAPS provide a robust methodology to sample the isotopic composition of snowmelt infiltration in remote watersheds and similar applications. Copyright © 2009 John Wiley & Sons, Ltd. [source] Modified passive capillary samplers for collecting samples of snowmelt infiltration for stable isotope analysis in remote, seasonally inaccessible watersheds 2: field evaluationHYDROLOGICAL PROCESSES, Issue 7 2010Marty D. Frisbee Abstract Twelve modified passive capillary samplers (M-PCAPS) were installed in remote locations within a large, alpine watershed located in the southern Rocky Mountains of Colorado to collect samples of infiltration during the snowmelt and summer rainfall seasons. These samples were collected in order to provide better constraints on the isotopic composition of soil-water endmembers in the watershed. The seasonally integrated stable isotope composition (,18O and ,2H) of soil-meltwater collected with M-PCAPS installed at shallow soil depths < 10 cm was similar to the seasonally integrated isotopic composition of bulk snow taken at the soil surface. However, meltwater which infiltrated to depths > 20 cm evolved along an isotopic enrichment line similar to the trendline described by the evolution of fresh snow to surface runoff from snowmelt in the watershed. Coincident changes in geochemistry were also observed at depth suggesting that the isotopic and geochemical composition of deep infiltration may be very different from that obtained by surface and/or shallow-subsurface measurements. The M-PCAPS design was also used to estimate downward fluxes of meltwater during the snowmelt season. Shallow and deep infiltration averaged 8·4 and 4·7 cm of event water or 54 and 33% of the measured snow water equivalent (SWE), respectively. Finally, dominant shallow-subsurface runoff processes occurring during snowmelt could be identified using geochemical data obtained with the M-PCAPS design. One soil regime was dominated by a combination of slow matrix flow in the shallow soil profile and fast preferential flow at depth through a layer of platy, volcanic rocks. The other soil regime lacked the rock layer and was dominated by slow matrix flow. Based on these results, the M-PCAPS design appears to be a useful, robust methodology to quantify soil-water fluxes during the snowmelt season and to sample the stable isotopic and geochemical composition of soil-meltwater endmembers in remote watersheds. Copyright © 2009 John Wiley & Sons, Ltd. [source] A robust methodology for RANS simulations of highly underexpanded jetsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2008G. Lehnasch Abstract This work aims at developing/combining numerical tools adapted to the simulation of the near field of highly underexpanded jets. An overview of the challenging numerical problems related to the complex shock/expansion structure encountered in these flows is given and an efficient and low-cost numerical strategy is proposed to overcome these, even on short computational domains. Based on common upwinding algorithms used on unstructured meshes in a mixed finite-volume/finite-element approach, it relies on an appropriate utilization of zonal anisotropic remeshing algorithms. This methodology is validated for the whole near field of cold air jets issuing from axisymmetric convergent nozzles and yielding various underexpansion ratios. In addition, the most usual corrections of the k,, model used to take into account the compressibility effects on turbulence are precisely assessed. Copyright © 2007 John Wiley & Sons, Ltd. [source] |