Right Atrial Appendage (right + atrial_appendage)

Distribution by Scientific Domains


Selected Abstracts


A Tissue-Specific Model of Reentry in the Right Atrial Appendage

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 6 2009
JICHAO ZHAO Ph.D.
Introduction: Atrial fibrillation is prevalent in the elderly and contributes to mortality in congestive heart failure. Development of computer models of atrial electrical activation that incorporate realistic structures provides a means of investigating the mechanisms that initiate and maintain reentrant atrial arrhythmia. As a step toward this, we have developed a model of the right atrial appendage (RAA) including detailed geometry of the pectinate muscles (PM) and crista terminalis (CT) with high spatial resolution, as well as complete fiber architecture. Methods and Results: Detailed structural images of a pig RAA were acquired using a semiautomated extended-volume imaging system. The generally accepted anisotropic ratio of 10:1 was adopted in the computer model. To deal with the regional action potential duration heterogeneity in the RAA, a Courtemanche cell model and a Luo-Rudy cell model were used for the CT and PM, respectively. Activation through the CT and PM network was adequately reproduced with acceptable accuracy using reduced-order computer models. Using a train of reducing cycle length stimuli applied to a CT/PM junction, we observed functional block both parallel with and perpendicular to the axis of the CT. Conclusion: With stimulation from the CT at the junction of a PM, we conclude: (a) that conduction block within the CT is due to a reduced safety factor; and (b) that unidirectional block and reentry within the CT is due to its high anisotropy. Regional differences in effective refractive period do not explain the observed conduction block. [source]


Endothelin System in Human Persistent and Paroxysmal Atrial Fibrillation

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 7 2001
BIANCA J.J.M. BRUNDEL Ph.D.
Endothelin System in Atrial Fibrillation. Introduction: Activation of the endothelin system is an important compensatory mechanism that is activated during left ventricular dysfunction. Whether this system plays a role at the atrial level during atrial fibrillation (AF) has not been examined in detail. The purpose of this study was to investigate mRNA and protein expression levels of the endothelin system in AF patients with and without concomitant underlying valve disease. Methods and Results: Right atrial appendages of 36 patients with either paroxysmal or persistent AF were compared with 36 controls in sinus rhythm. The mRNA amounts of pro-endothelin-1 (pro-ET-1), endothelin receptor A (ET-A), and endothelin receptor B (ET-B) were studied by semiquantitative polymerase chain reaction. Protein amounts of the receptors were investigated by slot-blot analysis. mRNA amounts of pro-ET-1 were increased (+ 40%; P = 0.002) only in AF patients with underlying valve disease. ET-A and ET-B receptor protein amounts were significantly reduced in patients with paroxysmal AF (,39% and ,47%, respectively) and persistent AF with underlying valve disease (, 28% and , 30%, respectively) and in persistent AF without valve disease (,20% and ,40%, respectively). ET-A mRNA expression was unaltered in paroxysmal and persistent AF, whereas ET-B mRNA was reduced by 30% in persistent AF with (P < 0.001) or without (P = 0.04) valve disease, but unchanged in paroxysmal AF. Conclusion: Substantial changes in gene expression of the endothelin system were observed in human atria during AF, especially in the presence of underlying valve disease. Alterations in endothelin expression associated with AF could play a role in the pathophysiology of AF and the progression of underlying heart disease. [source]


A Tissue-Specific Model of Reentry in the Right Atrial Appendage

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 6 2009
JICHAO ZHAO Ph.D.
Introduction: Atrial fibrillation is prevalent in the elderly and contributes to mortality in congestive heart failure. Development of computer models of atrial electrical activation that incorporate realistic structures provides a means of investigating the mechanisms that initiate and maintain reentrant atrial arrhythmia. As a step toward this, we have developed a model of the right atrial appendage (RAA) including detailed geometry of the pectinate muscles (PM) and crista terminalis (CT) with high spatial resolution, as well as complete fiber architecture. Methods and Results: Detailed structural images of a pig RAA were acquired using a semiautomated extended-volume imaging system. The generally accepted anisotropic ratio of 10:1 was adopted in the computer model. To deal with the regional action potential duration heterogeneity in the RAA, a Courtemanche cell model and a Luo-Rudy cell model were used for the CT and PM, respectively. Activation through the CT and PM network was adequately reproduced with acceptable accuracy using reduced-order computer models. Using a train of reducing cycle length stimuli applied to a CT/PM junction, we observed functional block both parallel with and perpendicular to the axis of the CT. Conclusion: With stimulation from the CT at the junction of a PM, we conclude: (a) that conduction block within the CT is due to a reduced safety factor; and (b) that unidirectional block and reentry within the CT is due to its high anisotropy. Regional differences in effective refractive period do not explain the observed conduction block. [source]


Enalapril Preserves Sinus Node Function in a Canine Atrial Fibrillation Model Induced by Rapid Atrial Pacing

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 11 2005
MASAO SAKABE M.D.
Effects of enalapril on canine sinus node (SN) dysfunction induced by long-term rapid atrial pacing were investigated. Methods and Results: Seventeen beagles were pretreated with either placebo (group I, n = 9) or enalapril 1 mg/kg/day (group II, n = 8) and paced at 500/min from the right atrial appendage for 4 weeks. Every week, corrected sinus node recovery time (CSNRT) and sinus cycle length (SCL) were measured. Quantitative analysis of interstitial fibrosis (IF) and adipose tissue (AT) in the SN was performed with Masson's trichrome stain, and apoptosis of the sinus nodal cells were detected with terminal deoxynucleotidyl transferase nick end-labeling. In group I, rapid atrial pacing prolonged both CSNRT and SCL. After 4 weeks of pacing, CSNRT and SCL were significantly shorter in group II (CSNRT, 410 ± 37 msec; SCL, 426 ± 34 msec) than in group I (CSNRT, 717 ± 52 msec, P < 0.005; SCL, 568 ± 73 msec, P < 0.05). Both IF and AT of the SN were greater in group I (IF, 9.7 ± 1.9%; AT, 32.6 ± 5.9%) than in seven sham dogs (IF, 2.4 ± 0.9%, P < 0.05; AT, 4.0 ± 1.7%, P < 0.05) and in group II dogs (IF, 4.0 ± 2.0%, P < 0.05; AT, 4.0 ± 1.7%, P < 0.05). End-labeling assay was positive in three of nine dogs in group I, but negative in group II and sham dogs. Conclusions: Rapid atrial pacing impaired SN function through IF and AT of the SN. Enalapril prevented these pacing-induced degenerative changes and improved SN function. [source]


Fractionation of Electrograms and Linking of Activation During Pharmacologic Cardioversion of Persistent Atrial Fibrillation in the Goat

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 5 2004
ZHAOLIANG SHAN M.D.
Introduction: During atrial fibrillation (AF), there is fractionation of extracellular potentials due to head-to-tail interaction and slow conduction of fibrillation waves. We hypothesized that slowing of the rate of AF by infusion of a Class I drug would increase the degree of organization of AF. Methods and Results: Seven goats were instrumented with 83 epicardial electrodes on the left atrium, left atrial appendage, Bachmann's bundle, right atrium, and right atrial appendage. AF was induced and maintained by an automatic atrial fibrillator. After AF had persisted for 4 weeks, the Class IC drug cibenzoline was infused at a rate of 0.1 mg/kg/min. AF cycle length (AFCL), the percentage of fractionated potentials, conduction velocity (CV), and direction of propagation of the fibrillation waves were measured during baseline, after AFCL was increased by 20, 40, 60, and 80 ms, and shortly before cardioversion. Infusion of cibenzoline increased the mean of the median AFCLs from 96 ± 6 ms to 207 ± 43 ms (P < 0.0001). The temporal variation in AFCL in different parts of the atria was 8% to 20% during control and, with the exception of Bachmann's bundle, was not significantly reduced during cibenzoline infusion. CV decreased from 76 ± 14 ms to 52 ± 9 cm/s (P < 0.01). Cibenzoline increased the percentage of single potentials from 81%± 4% to 91%± 4% (P < 0.01) and decreased the incidence of double potentials from 14%± 4% to 7 ± 5% (P < 0.01) and multiple potentials from 5%±% to 1%± 2% (P < 0.001). Whereas during control, linking (consecutive waves propagating in the same direction) during seven or more beats occurred in 9%± 15% of the cycles, after cibenzoline the degree of linking had increased to 40%± 33% (P < 0.05). During the last two beats before cardioversion, there was a sudden prolongation in AFCL from 209 ± 37 ms to 284 ± 92 ms (P < 0.01) and a strong reduction in fractionated potentials (from 22%± 12% to 6%± 5%, P < 0.05). Conclusion: The Class IC drug cibenzoline causes a decrease in fractionation of fibrillation electrograms and an increase in the degree of linking during AF. This supports the observation that Class I drugs widen the excitable gap during AF. (J Cardiovasc Electrophysiol, Vol. 15, pp. 572-580, May 2004) [source]


Prolonged Atrial Action Potential Durations and Polymorphic Atrial Tachyarrhythmias in Patients with Long QT Syndrome

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 10 2003
PAULUS KIRCHHOF M.D.
Introduction: Prolongation of the QT interval and torsades de pointes tachycardias due to altered expression or function of repolarizing ion channels are the hallmark of congenital long QT syndrome (LQTS). The same ion channels also contribute to atrial repolarization, and familial atrial fibrillation may be associated with a mutated KVLQT1 gene. We therefore assessed atrial action potential characteristics and atrial arrhythmias in LQTS patients. Methods and Results: Monophasic action potentials (MAPs) were simultaneously recorded from the right atrial appendage and the inferolateral right atrium in 10 patients with LQTS (8 with identifiable genotype) and compared to 7 control patients. Atrial arrhythmias also were compared to MAPs recorded in patients with persistent (n = 10) and induced (n = 4) atrial fibrillation. Atrial action potential durations (APD) and effective refractory periods (ERP) were prolonged in LQTS patients at cycle lengths of 300 to 500 msec (APD prolongation 30,41 msec; ERP prolongation 26,52 msec; all P < 0.05). Short episodes of polymorphic atrial tachyarrhythmias (polyAT, duration 4,175 sec) occurred spontaneously or during pauses after pacing in 5 of 10 LQTS patients, but not in controls (P < 0.05). P waves showed undulating axis during polyAT. Cycle lengths of polyAT were longer than during persistent and induced atrial fibrillation. Afterdepolarizations preceded polyAT in 2 patients. The electrical restitution curve was shifted to longer APD in LQTS patients and to even longer APD in LQTS patients with polyAT. Conclusion: This group of LQTS patients has altered atrial electrophysiology: action potentials are prolonged, and polyAT occurs. PolyAT appears to be a specific arrhythmia of LQTS reminiscent of an atrial form of "torsades de pointes."(J Cardiovasc Electrophysiol, Vol. 14, pp ***-***, October 2003) [source]


Spatial Distribution and Frequency Dependence of Arrhythmogenic Vagal Effects in Canine Atria

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 9 2000
OLEG F. SHARIFOV Ph.D.
Arrhythmogenic Vagal Effects in Dog Atria. introduction: Prior studies in isolated canine atria demonstrated that acetylcholine-induced reentrant atrial fibrillation (AF) was triggered by multifocal activity in the area of normal impulse origin (sinus node-crista terminalis). The aim of this study was to investigate the activation sequence in AF induced by vagal stimulation (VS) in intact dog hearts. Methods and Results: VS (10 to 50 Hz, 1 msec, 15 V, 5-sec trains) induced single or multiple atrial premature depolarizations (APDs), and/or AF in 8 of 10 open chest dogs. Occurrence of APDs and AF increased with increasing VS intensity. Epicardial mapping (254 unipolar electrodes) of both atria showed that APDs as a rule emerged from ectopic sites, often from the right atrial appendage. Activation mapping of the first 10 cycles of AF showed that only a small number (<3 to 4) of unstable reentrant circuits were possible at the same moment. Moreover, most sustained VS-induced AFs were accounted for by a single leading stable reentrant circuit that activated the remainder of the atria. Conclusion: (1) Occurrence of vagally induced APDs and AF increases with increasing frequency of VS. (2) VS-induced focal ectopic APDs are widely distributed over the atria. (3) A single APD can be sufficient for initiation of reentrant AF. (4) Despite its high rate of sustained AF, it may be maintained by single stable reentrant circuit. (5) The atrial septum can play an important role in both the initiation and the maintenance of VS-induced AF. [source]


A Pilot Study of a Low-Tilt Biphasic Waveform for Transvenous Cardioversion of Atrial Fibrillation: Improved Efficacy Compared with Conventional Capacitor-Based Waveforms in Patients

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 8 2008
BENEDICT M. GLOVER M.D.
Background:The optimal waveform tilt for defibrillation is not known. Most modern defibrillators used for the cardioversion of atrial fibrillation (AF) employ high-tilt, capacitor-based biphasic waveforms. Methods:We have developed a low-tilt biphasic waveform for defibrillation. This low-tilt waveform was compared with a conventional waveform of equivalent duration and voltage in patients with AF. Patients with persistent AF or AF induced during a routine electrophysiology study (EPS) were randomized to receive either the low-tilt waveform or a conventional waveform. Defibrillation electrodes were positioned in the right atrial appendage and distal coronary sinus. Phase 1 peak voltage was increased in a stepwise progression from 50 V to 300V. Shock success was defined as return of sinus rhythm for ,30 seconds. Results:The low-tilt waveform produced successful termination of persistent AF at a mean voltage of 223 V (8.2 J) versus 270 V (6.7 J) with the conventional waveform (P = 0.002 for voltage, P = ns for energy). In patients with induced AF the mean voltage for the low-tilt waveform was 91V (1.6 J) and for the conventional waveform was 158 V (2.0 J) (P = 0.005 for voltage, P = ns for energy). The waveform was much more successful at very low voltages (less than or equal to 100 V) compared with the conventional waveform (Novel: 82% vs Conventional 22%, P = 0.008). Conclusion:The low-tilt biphasic waveform was more successful for the internal cardioversion of both persistent and induced AF in patients (in terms of leading edge voltage). [source]


Clinical Significance of the Atrial Fibrillation Threshold in Patients with Paroxysmal Atrial Fibrillation

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 5 2001
KEIJI INOUE
INOUE, K., et al.: Clinical Significance of the Atrial Fibrillation Threshold in Patients with Paroxysmal Atrial Fibrillation. AF threshold and the other electrophysiological parameters were measured to quantify atrial vulnerability in patients with paroxysmal atrial fibrillation (PAF, n = 47), and those without AF (non-PAF, n = 25). Stimulations were delivered at the right atrial appendage with a basic cycle length of 500 ms. The PAF group had a significantly larger percentage of maximum atrial fragmentation (%MAF, non-PAF: mean ± SD = 149 ± 19%, PAF: 166 ± 26%, P = 0.009), fragmented atrial activity zone (FAZ, non-PAF: median 0 ms, interquartile range 0,20 ms, PAF: 20 ms, 10,40 ms, P = 0.008). Atrial fibrillation threshold (AF threshold, non-PAF: median 11 mA, interquartile range 6,21 mA, PAF: 5 mA, 3,6 mA, P < 0.001) was smaller in the PAF group than in the non-PAF group. Sensitivity, specificity, and positive predictive value of electrophysiological parameters were as follows, respectively: %MAF (cut off at 150%, 78%, 52%, 76%), FAZ (cut off at 20 ms, 47%, 84%, 85%), AF threshold (cut off at 10 mA, 94%, 60%, 81%). There were no statistically significant differences between the non-PAF and PAF groups in the other parameters (effective refractory period, interatrial conduction time, maximum conduction delay, conduction delay zone, repetitive atrial firing zone, wavelength index), that were not specific for PAF. In conclusion, the AF threshold could be a useful indicator to evaluate atrial vulnerability in patients with AF. [source]


Prevention of the Initiation of Atrial Fibrillation: Mechanism and Efficacy of Different Atrial Pacing Modes

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 3 2000
WEN-CHUNG YU
Several atrial pacing modes have been reported to be effective in the prevention of atrial fibrillation (AF); they included biatrial pacing, dual site right atrial pacing, Bachmann's bundle (BB) pacing, and coronary sinus pacing. However, the relative efficacy and electrophysiological mechanisms of these pacing modes in the prevention of AF are not clear. In 15 patients (age 54 ± 14 years) with paroxysmal AF, P wave duration, effective refractory period, and atrial conduction time were determined with six different atrial drive pacings, that were right atrial appendage (RAA), BB, right posterior interatrial septum (RPS), distal coronary sinus (DCS), RAA plus RPS simultaneously (DSA), and RAA plus DCS simultaneously (BiA). All these patients consistently had AF induced with early RAA extrastimulation coupling to RAA drive pacing. No patient had AF induced with RAA extrastimulation coupled to BB, RPS, or DCS drive pacing, but seven and eight patients had AF induced with RAA extrastimulation coupled to DSA and BiA drive pacing, respectively. The P wave duration was longest during RAA pacing, and became shorter during other atrial pacing modes. Analysis of electrophysiological change showed that early RAA extrastimulation coupled to RAA drive pacing caused the longest atrial conduction delay among these atrial pacing modes; BB, RPS, and DCS drive pacing caused a greater reduction of this conduction delay than DSA and BiA drive pacing. In addition, the effective refractory periods of RAA determined with BB, RPS, and DCS drive pacing were similar and longer than that determined with DSA and BiA drive pacing. In patients with paroxysmal AF, this arrhythmia was readily induced with RAA extrastimuli coupled to RAA drive pacing. BB, RPS, and DCS pacing were similar and more effective than DSA and BiA pacing in preventing AF. [source]


Implantation of One Piece Biventricular Assist Device by Left Thoracotomy in an Ovine Model

ARTIFICIAL ORGANS, Issue 9 2000
Won Gon Kim
Abstract: In this report, we describe an operative procedure for our implantable 1 piece biventricular assist device (BiVAD) based on a moving actuator mechanism, using an ovine model. Our implantable BiVAD is a volumetric coupled 1 piece unit including right and left blood sacs and an actuator assembly based on the moving actuator mechanism. The BiVAD was controlled by fixed rate control with 75 bpm for the most part. Both the left and the right full ejection modes with the maximum stroke angle were selected to minimize blood stasis in the blood sacs because of low assist flow condition. Three Corriedale sheep were used for the device implantation by a left thoracotomy incision. Cannulation was successfully performed in all cases. Although exposability of the right atrial appendage varied from animal to animal, the insertion of the cannula was easily performed. The cannulas were connected to the pump-actuator assembly in the preperitoneal pocket. All 3 animals survived the experimental procedure. During implantation of the device, in the 1 month survival animal, pump flow was maintained between 2.0 L/min and 2.5 L/min, mean aortic pressure was 90,110 mm Hg, and mean pulmonary artery pressure was 20,30 mm Hg. The left and right atrial pressure were maintained between 0 and 5 mm Hg. In conclusion, this ovine model for implantation of the 1 piece BiVAD can be an effective alternative for testing in vivo biocompatibility of the device although it needs more consideration for anatomical fittability for future human application. [source]


Electrophysiological effects of 5-hydroxytryptamine on isolated human atrial myocytes, and the influence of chronic , -adrenoceptor blockade

BRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2003
Davide Pau
5-Hydroxytryptamine (5-HT) has been postulated to play a proarrhythmic role in the human atria via stimulation of 5-HT4 receptors. The aims of this study were to examine the effects of 5-HT on the L-type Ca2+ current (ICaL) action potential duration (APD), the effective refractory period (ERP) and arrhythmic activity in human atrial cells, and to assess the effects of prior treatment with , -adrenoceptor antagonists. Isolated myocytes, from the right atrial appendage of 27 consenting patients undergoing cardiac surgery who were in sinus rhythm, were studied using the whole-cell perforated patch-clamp technique at 37°C. 5-HT (1 nM,10 ,M) caused a concentration-dependent increase in ICaL, which was potentiated in cells from , -blocked (maximum response to 5-HT, Emax=299±12% increase above control) compared to non- , -blocked patients (Emax=220±6%, P<0.05), but with no change in either the potency (log EC50: ,7.09±0.07 vs ,7.26±0.06) or Hill coefficient (nH: 1.5±0.6 vs 1.5±0.3) of the 5-HT concentration,response curve. 5-HT (10 ,M) produced a greater increase in the APD at 50% repolarisation (APD50) in cells from , -blocked patients (of 37±10 ms, i.e. 589±197%) vs non- , -blocked patients (of 10±4 ms, i.e. 157±54%; P<0.05). Both the APD90 and the ERP were unaffected by 5-HT. Arrhythmic activity was observed in response to 5-HT in five of 17 cells (29%) studied from , -blocked, compared to zero of 16 cells from the non- , -blocked patients (P<0.05). In summary, the 5-HT-induced increase in calcium current was associated with a prolonged early plateau phase of repolarisation, but not late repolarisation or refractoriness, and the enhancement of these effects by chronic , -adrenoceptor blockade was associated with arrhythmic potential. British Journal of Pharmacology (2003) 140, 1434,1441. doi:10.1038/sj.bjp.0705553 [source]


Isomerism of the right atrial appendages: Clinical, anatomical, and microscopic study of a long-surviving case with asplenia and ciliary abnormalities

CLINICAL ANATOMY, Issue 3 2003
R. Raman
Abstract This study describes a case of isomerism of the right atrial appendages (bilateral morphologically right atrial appendages associated with complex congenital cardiac lesions) with ciliary abnormalities. Detailed investigation included gross anatomic dissection, review of the clinical history, and light, confocal, and electron microscopy. Clinically, this 40-year-old, long-surviving male patient had relatively good health until 4 years before death, which was due to cardiac failure. Surgical intervention consisted only of a Blalock-Taussig shunt (anastomosis of the right subclavian artery to the right pulmonary artery) at 6 years of age. Despite the presence of complex cardiac malformations and asplenia, his longevity may be attributed to the connection of the pulmonary veins to the atrium without pulmonary venous obstruction, pulmonary valvar stenosis rather than atresia, no significant atrioventricular valve regurgitation, and no serious infections during his life. Microscopic examination of bronchial epithelium revealed a narrow, disorganized epithelium with abundant goblet cells and short, angulated cilia with a random orientation and possibly an abnormal central microtubule doublet. These abnormalities were not present in controls, and have been noted in primary ciliary dyskinesia (PCD) or Kartagener's syndrome. Because this syndrome has classically been thought to cause random lateralization resulting in a mirror-imaged arrangement of the organs, the occurrence of truly isomeric patterns is not widely recognized. Whereas polysplenia and left bronchial isomerism have been reported to occur in immotile cilia syndrome, this is the first report to present detailed postmortem anatomic evidence of isomerism of the right atrial appendages, right bronchial isomerism, and asplenia in association with microscopy suggesting ciliary abnormalities. Clin. Anat. 16:269,276, 2003. © 2003 Wiley-Liss, Inc. [source]