River Water (river + water)

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by River Water

  • river water sample

  • Selected Abstracts


    Electrochemical Detection of Trace Concentrations of Cadmium and Lead with a Boron-Doped Diamond Electrode: Effect of KCl and KNO3 Electrolytes, Interferences and Measurement in River Water

    ELECTROANALYSIS, Issue 3 2004
    Carol Babyak
    Abstract Parts-per-billion levels of cadmium and lead were detected using square-wave anodic stripping voltammetry with a boron-doped diamond electrode. Calibration plots (10-minute deposition time) in KCl and KNO3 were non-linear at low concentrations (1,5,ppb) due to the deposition mechanism of these metals. The preferred electrolyte for cadmium was KCl, while lead could be measured in either electrolyte. The lowest concentrations included in the linear portion of the calibration plot (5,minute deposition time) for cadmium were 10,ppb and 50,ppb in KCl and KNO3, respectively, and 10,ppb for lead in KNO3. The presence of either lead or copper suppressed the cadmium stripping peak, but the lead stripping peak was unaffected by cadmium, and enhanced by the addition of copper. A river water sample was analyzed for cadmium and lead, and the cadmium results were confirmed using ICP-AES spectrometry. It was determined electrochemically that a fraction of lead in the river sample was bound by complexing material in the sample. [source]


    Genotoxicity in native fish associated with agricultural runoff events

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2004
    Andrew Whitehead
    Abstract The primary objective of the present study was to test whether agricultural chemical runoff was associated with instream genotoxicity in native fish. Using Sacramento sucker (Catostomus occidentalis), we combined field-caging experiments in an agriculturally dominated watershed with controlled laboratory exposures to field-collected water samples, and we coupled genotoxicity biomarker measurements in fish with bacterial mutagenicity analysis of water samples. We selected DNA strand breakage as a genotoxicity biomarker and Ames Salmonella mutagenicity tests as a second, supporting indicator of genotoxicity. Data from experiments conducted during rainfall runoff events following winter application of pesticides in 2000 and 2001 indicated that DNA strand breaks were significantly elevated in fish exposed to San Joaquin River (CA, USA) water (38.8, 28.4, and 53.6% DNA strand breakage in year 2000 field, year 2000 lab, and year 2001 field exposures, respectively) compared with a nearby reference site (15.4, 8.7, and 12.6% DNA strand breakage in year 2000 field, year 2000 lab, and year 2001 field exposures, respectively). Time-course measurements in field experiments supported a linkage between induction of DNA strand breakage and the timing of agricultural runoff. San Joaquin River water also caused significant reversion mutation in two Ames Salmonella tester strains. Salmonella mutagenicity corroborated in-stream effects, further strengthening a causal relationship between runoff events and genotoxicity. Potentially responsible agents are discussed in the context of timing of runoff events in the field, concordance between laboratory and field exposures, pesticide application patterns in the drainage, and analytical chemistry data. [source]


    Chemical and Isotopic Constraints on the Origin of Wadi El-Tarfa Ground Water, Eastern Desert, Egypt

    GROUND WATER, Issue 5 2000
    M. Sultan
    We evaluated the use of the renewable ground water resources of the Eastern Desert to develop sustainable agriculture in Upper Egypt, an alternative that could alleviate some of Egypt's dependence on water from the Nile River. Ground water from shallow aquifers in the Eastern Desert of Egypt, near the intersection of Wadi El-Tarfa and the Nile River, was analyzed for chemical compositions, stable isotope ratios, and tritium activities. The ground water has a range in total dissolved solids of 300 to 5000 mg/L. Values of ,D and ,18O range from -10 to +34 %o and -2 to +5.2 %o, respectively, and defines a line having a slope of 5.7 that intersects the meteoric water line at about ,D = -15 %o on a plot of 8D versus ,18O. These findings indicate that the water might have been derived by a combination of evaporation of and salt addition to regional precipitation. Only one sample could have been derived directly by evaporation and transpiration of modern Nile River water. Salinization of the ground water could have occurred through dissolution of marine aerosol dry fallout, carbonate minerals, gypsum, and other trace evaporitic minerals at and near the ground surface. Tritium activities ranged from 0.04 to 12.9 TU (tritium unite), indicating that all but one of the samples were derived at least partly from precipitation that occurred within the last 45 years. These data indicate that Nubian Aquifer paleowater is not a significant component of the shallow aquifers of this portion of the Eastern Desert. The most likely source of this ground water is sporadic flash flood events yielding locally voluminous recharge that accumulates in coarse sediments and fractured rock beneath alluvial channels. The magnitude of this renewable ground water resource and its potential for supporting sustainable agriculture require further investigation. [source]


    Sensing of toxic metals through pH changes using a hybrid sorbent material: Concept and experimental validation

    AICHE JOURNAL, Issue 11 2009
    Prasun K. Chatterjee
    Abstract This article reports a new hybrid sorbent material that is capable of detecting trace concentration of toxic metals, such as zinc, lead, copper, nickel, etc., through pH changes only. The material is essentially a composite granular material synthesized through rapid fusion of a mixture of amorphous hydrated ferric oxide (HFO) and akermanite or calcium magnesium silicate (Ca2MgSi2O7). When a water sample is rapidly passed through a mini-column containing this hybrid material, effluent pH at the exit always remains alkaline (,9.0) because of slow hydrolysis of akermanite and steady release of hydroxyl (OH,) ions. This exit solution turns pink through the addition of a phenolphthalein indicator. Commonly encountered electrolytes containing sodium, calcium, chloride, and sulfate have no impact on the exit pH from the mini-column. However, when trace concentration of a heavy metal (say lead) is present in the sample water, a considerable drop in pH (>2 units) is observed for the exiting solution. At this point, the solution turns colorless through the addition of a phenolphthalein indicator. Moreover, the change in the slope of pH, i.e., ,dpH/dBV, provides a sharp, noticeable peak for each toxic metal where BV is the bed volumes of solution fed. The technique allowed detection of zinc and lead through pH swings in synthesized samples, spiked Bethlehem City water, and also in Lehigh River water in the presence of phosphate and natural organic matter (NOM). Using a simple preconcentration technique, lower than 10 ,g/l of lead was detected with a significant peak. From a mechanistic viewpoint, high sorption affinity of HFO surface sites toward toxic metal cations, ability of akermanite to maintain near-constant alkaline pH for a prolonged period through slow hydrolysis and labile metal-hydroxy complex formation causing dissipation of OH, ions from the aqueous phase provide a synergy that allows detection of toxic metals at concentrations well below 100 ,g/l through pH changes. Nearly all previous investigations pertaining to toxic metals sensing use metal-selective enzymes or organic chromophores. This simple-to-operate technique using an inexpensive hybrid material may find widespread applications in the developing world for rapid detection of toxic metals through pH changes. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


    A review of the importance of freshwater inflow to the future conservation of Lake St Lucia

    AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 7 2009
    A. K. Whitfield
    Abstract 1.Lake St Lucia, the oldest formally protected estuary in the world is under threat from historic and present manipulation of freshwater supplies to the system. 2.Constraints to the functioning of the ecosystem began in 1914 with the commencement of draining and canalization of the Mfolozi Swamp to open up the swamp and river floodplain for sugar cane cultivation. Warner's Drain was completed in 1936 and the sediment filtering capability of the swamp on river floodwaters was effectively removed. This resulted in exceptionally high sediment loads from the Mfolozi River entering directly into the St Lucia system and the river was therefore diverted southwards and provided with a separate estuary mouth. This deprived St Lucia of its single largest freshwater supply. 3.During the past 50,60 years, increasing freshwater abstractions from the Mkhuze, Mzinene, Hluhluwe and Nyalazi rivers have contributed to the increasingly severe salinity extremes experienced by Lake St Lucia. In the past decade, desiccation of large areas of False Bay, North and South Lake has occurred, due primarily to natural estuary mouth closure combined with a prolonged drought and unnaturally low freshwater inflows during the closed phase. These events have pushed the system into an extreme state that has not been recorded previously and would not have occurred if Mfolozi River water had been available to the St Lucia system over this drought period. 4.Forestry plantations have further exacerbated the freshwater supply situation, although recent removal of pine plantations on the eastern and western shores of the lake are likely to help restore groundwater flows to the system. 5.This review explores the possibility of relinking the Mfolozi River, once the Mfolozi floodplain swamp has been re-established, to the St Lucia system, thereby bringing urgently needed fresh water to this threatened World Heritage Site. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Modern and Holocene hydrographic characteristics of the shallow Kara Sea shelf (Siberia) as reflected by stable isotopes of bivalves and benthic foraminifera

    BOREAS, Issue 3 2005
    JOHANNES SIMSTICH
    River discharge of Ob and Yenisei to the Kara Sea is highly variable on seasonal and interannual time scales. River water dominates the shallow bottom water near the river mouths, making it warmer and less saline but seasonally and interannually more changeable than bottom water on the deeper shelf. This hydrographic pattern shows up in measurements and modelling, and in stable isotope records (,18 O, ,13 C) along the growth axis of bivalve shells and in multiple analyses of single benthic foraminiferal shells. Average isotope ratios increase, but sample-internal variability decreases with water depth and distance from river mouths. However, isotope records of bivalves and foraminifera of a sediment core from a former submarine channel of Yenisei River reveal a different pattern. The retreat of the river mouth from this site due to early Holocene sea level rise led to increasing average isotope values up core, but not to the expected decrease of the in-sample isotope variability. Southward advection of cold saline water along the palaeo-river channel probably obscured the hydrographic variability during the early Holocene. Later, when sediment filled the channel, the hydrographic variability at the core location remained low, because the shallowing proceeded synchronously with the retreat of the river mouth. [source]


    Mixing processes in the Amazon River at the confluences of the Negro and Solimões Rivers, Encontro das Įguas, Manaus, Brazil

    HYDROLOGICAL PROCESSES, Issue 22 2009
    Alain Laraque
    Abstract The confluence of the rivers Negro and Solimões gives birth to the Amazon River near Manaus (Brazil). At their confluence, these two rivers with their very different physical and geochemical characteristics provide an interesting example of the mixing of waters along a reach of approximately one-hundred kilometres. The purpose of this article is to describe and explain the spatial configuration of the Solimões,Negro Rivers mixing zone, based on a systematic sampling survey carried out in September 1997, using a special sampler and an acoustic Doppler current profiler (Acoustic Doppler Current Profiler). The waters of the Negro River differ from those of the Solimões River in their lower velocity (0·3 vs 1 m s,1), conductivity (8 vs 80 µS cm,1 at 25 °C), turbidity (5 vs 80 NTU), pH (5·5 vs 7·0) and higher temperatures (by 1 °C). Due to their higher density, the waters of the Solimões River slide under those of the Negro River, and consequently, Negro River waters are located at the surface, close to the left bank, and Solimões River waters are located at the bottom, close to the right bank. The contact between the waters of the two rivers changes from a clearly defined vertical boundary to a diffuse horizontal boundary, as they move downstream. The complete mixing process takes more than 30 h and 100 km. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Endocrine disruptor issues in Japan

    CONGENITAL ANOMALIES, Issue 2 2002
    Taisen Iguchi
    ABSTRACT, Monitoring of environmental chemicals in Japan has revealed that several endocrine active chemicals are in river water, sediments, and wildlife as well as in the human umbilical cord. In 2001, risk assessments of tributyltin and nonylphenol have been conducted by the Ministry of the Environment, Japan. Risk assessments of di(2-ethylhexyl)phthalate and di-isononyl phthalate have also been performed by the Ministry of Health, Labour and Welfare using a toxicological point of view in 2001. In this review, an overview of recent progress in endocrine disruptor research in Japan will be provided. [source]


    Renewable Copper and Silver Amalgam Film Electrodes of Prolonged Application for the Determination of Elemental Sulfur Using Stripping Voltammetry

    ELECTROANALYSIS, Issue 7 2008
    Robert Piech
    Abstract New, renewable copper (Hg(Cu)FE) and silver (Hg(Ag)FE) based amalgam film electrodes applied for the determination of elemental sulfur using differential pulse cathodic stripping voltammetry are presented. With surface areas adjustable from 1 to 12,mm2, both electrodes are characterized by very good surface reproducibility (,2%) and long-term stability (a few thousand measurement cycles). The mechanical refreshing of the amalgam film takes about 1,2 seconds. The effects of various factors such as instrumental parameters and the supporting electrolyte composition were optimized. Interferences from sulfides are easily removed by the addition of acid, and bubbling with argon, for Hg(Ag)FE. In the case of Hg(Cu)FE, sulfides did not interfere. The calibration graph is linear within the studied range from 16,ng L,1 to 4.8,,g L,1 for Hg(Cu)FE, and up to 6.4,,g L,1 for Hg(Ag)FE (tacc=15,s). The correlation coefficients for the two electrodes were at least 0.997. The detection limits for a low concentration of S(0) and tacc=60,s are as low as 14,ng L,1 for Hg(Cu)FE and 4,ng L,1 for Hg(Ag)FE. The proposed method was successfully applied and validated by studying the recovery of S(0) from spiked river water. [source]


    Automatic Voltammetric System for Continuous Trace Metal Monitoring in Various Environmental Samples

    ELECTROANALYSIS, Issue 19-20 2007
    Ųyvind Mikkelsen
    Abstract Some recent developments and results in the field of automatic monitoring of electrolabile concentration of zinc and iron in the low ,g/L range in river water, drainage water, and waste water by use of solid dental amalgam electrode (DAM) as a working electrode are reviewed for three different geographical sites representing the mentioned matrixes. At all sites, voltammetric measurements were carried out continuously every 30 or 60,minutes for periods up to 4,months, and compared with total amounts of the metals found by ICP-MS on manually collected samples. In total, the observed concentration ranges analyzed was in the ranges of sub-,g/L to approximately 30,,g/L for zinc, and from approximately 1,,g/L to 150,,g/L. for iron. Results shows good calibration curves for the metals in the different matrixes (r2avg=0.99) with standard deviation within 5%. The voltammetric system showed good stability and gave reliable results which were in a reasonable agreement with ICP-MS measurements for all analyses when comparing the concentration trends. The frequency of maintenance varied from once a week in waste water samples to once a month in river water. [source]


    Adsorptive Stripping Voltammetric Determination of Amitrole at a Multi-Wall Carbon Nanotubes Paste Electdrode

    ELECTROANALYSIS, Issue 5-6 2005
    M. Chicharro
    Abstract This work reports the excellent electrocatalytic activity of carbon nanotubes paste electrodes (CNTPE) prepared by dispersion of multi-wall carbon nanotubes (MWNT) within mineral oil toward the oxidation of 3-amino-1H -1,2,4-triazole (amitrole). The quantification is performed by adsorptive stripping voltammetry (AdSV). The influence of the paste composition and surface pretreatments as well as the amitrole accumulation conditions on the adsorption and further electrooxidation of this herbicide is described. After potentiodynamic pretreatment in 0.050,M phosphate buffer pH,7.4 the amitrole oxidation signal shifts 250,mV toward more negative potential and the sensitivity increases 29 fold, demonstrating that pretreated CNTPEs are extremely useful for a highly sensitive determination of amitrole down to the sub-,M levels. The oxidation peak current is proportional to the amitrole concentration over the range from 0.8 to 7.0,,M (5,min accumulation), with a detection limit of 0.6,,M (48,,gL,1) and a precision of 4.3%, n=20. The proposed method was used for the determination of amitrole in spiked river water (Alberche River (Madrid, Spain)) and tap water samples (Madrid, Spain) at levels higher than 0.6,,M. [source]


    Rapid determination of aliphatic amines in water samples by pressure-assisted monolithic octadecylsilica capillary electrochromatography-mass spectrometry

    ELECTROPHORESIS, Issue 18-19 2004
    Bricio Santos
    Abstract A pressure-assisted capillary chromatography-mass spectrometry method based on the use of a monolithic octadecylsilica (ODS) capillary is proposed for the determination of aliphatic amines. A 25 mM citric acid buffer containing 10% methanol is used as running electrolyte. Separation is achieved by simultaneously applying a capillary electrophoresis (CE) voltage of 13 kV and an overimposed pressure of 8 bar. The use of pressure is required to ensure stable electrospray conditions. Analysis times are reduced by using a capillary column consisting of a 30 cm long monolithic silica capillary column bound with ODS and a fused-silica capillary column also 30 cm long. The proposed method was successfully applied to the determination of low-molecular-weight aliphatic amines in tap and river water. The analysis of real samples requires cleanup and preconcentration, which can be performed automatically by inserting a minicolumn in the replenishment system of the commercial instrument. [source]


    On-line preconcentration for capillary electrophoresis-atomic fluorescence spectrometric determination of arsenic compounds

    ELECTROPHORESIS, Issue 12 2004
    Xue-Bo Yin
    Abstract An on-line preconcentration method was developed for capillary electrophoresis (CE) with hydride generation-atomic fluorescence spectrometric (HG-AFS) detection of arsenite, arsenate, dimethylarsenic acid, and monomethylarsenic acid. These arsenic species were negatively charged in the sample solution with high pH. When the potential was applied to the electrophoretic capillary, the negatively charged analyte ions moved faster and stacked at the boundary of sample and CE buffer with low pH. So, high sample pH in combination with low buffer pH allowed the injection of large sample volumes (, 1100 nL). Comparison of the preconcentration of analyte solution, prepared with doubly deionized water and that prepared with lake or river water, indicated that preconcentration was independent on the original matrix. With injection of ,1100 nL sample, an enrichment factor of 37,50-fold was achieved for the four species. Detection limits for the four arsenic species ranged from 5.0 to 9.3 ,g·L,1. Precisions (RSDs, n = 5) were in the range of 4.9,6.7% for migration time, 4.7,11% for peak area, and 4.3,7.1% for peak height, respectively. The recoveries of the four species in locally collected water solution spiked with 0.1 ,g·mL,1 (as As) ranged from 83 to 109%. [source]


    Evaluation of river water genotoxicity using the piscine micronucleus test

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 6 2007
    Serap Ergene
    Abstract The Berdan River, which empties into the Mediterranean Sea on the east coast of Turkey, receives discharges of industrial and municipal waste. In the present study, the in vivo piscine micronucleus (MN) test was used to evaluate the genotoxicity of water samples collected from different locations along the Berdan River. Nile tilapia (Oreochromis niloticus) were exposed in the laboratory for 2, 4, and 6 days, and micronuclei were evaluated in peripheral blood erythrocytes, gill cells, and caudal fin epithelial cells. A single dose of 5 mg/L cyclophosphamide was used as a positive control. In addition to micronuclei, nuclear abnormalities (NAs), such as binucleated cells and blebbed, notched, and lobed nuclei, were assessed in the erythrocytes, and chemical analyses were carried out to determine the amount of heavy metals in the water samples. MN and NA frequencies were significantly elevated (up to 2- to 3-fold) in fish exposed to river water samples taken downstream of potential discharges, and the elevated responses in gill and fin cells were related to the concentration of heavy metals in the water. MN frequencies (expressed as micronucleated cells/1,000 cells), in both treated and untreated fish, were greatest in gill cells (range: 0.80,3.70), and generally lower in erythrocytes (range: 0.50,2.80), and fin cells (range: 0.45,1.70). The results of this study indicate that the Berdan River is contaminated with genotoxic pollutants and that the genotoxicity is related to the discharge of wastes into the river water. Environ. Mol. Mutagen., 2007. © 2007 Wiley-Liss, Inc. [source]


    Identifying the nonpoint source of perfluorinated compounds using a geographic information system based approach

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2009
    Yasuyuki Zushi
    Abstract Perfluorinated compounds (PFCs) have been detected in a wide range of places. They have also been reported to come from nonpoint sources, but the origin of these sources has not been identified. In the present study, we attempted to characterize the nonpoint source of PFCs in the Hayabuchi River, Japan, which runs through an urban area, using a geographic information system (GIS) and statistical analysis. We also estimated annual PFC loads from nonpoint sources in Japan as a whole, determining a magnitude comparable to that from sewage treatment plants (STPs); the range was a few tons per year for each PFC. Perfluorinated compound pollution in river water was found to increase when the river received drainage from an area with a high proportion of commercial and/or transportation land use. It was also found that more PFCs were discharged from the watersheds where train stations are located. This result could be interpreted as the use of land for commercial and transportation purposes is prevalent in close proximity to train stations, and that the effluents from those areas contain high concentrations of PFCs. These findings suggested that train stations could be indicators of nonpoint sources of PFCs. [source]


    Structural and functional responses of river biofilm communities to the nonsteroidal anti-inflammatory diclofenac

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2007
    John R. Lawrence
    Abstract Diclofenac is a nonsteroidal anti-inflammatory drug (NSAID) that has been detected widely in surface waters in North America and Europe. The impact of diclofenac on river biofilm communities was investigated at exposures of 10 and 100 ,g L,1 of diclofenac or its molar equivalent in carbon and nutrients. Experiments were carried out with river water during spring and summer using rotating annular reactors as model systems. Diclofenac or nutrients at 10 ,g L,1 were observed to have no significant effect on algal, bacterial, and cyanobacterial biomass in spring, whereas in the summer the nutrient equivalent reduced algal biomass and diclofenac reduced cyanobacterial biomass relative to control biofilms (p < 0.05). In contrast, at 100 ,g L,1 diclofenac or nutrients, the result was increased cyanobacterial and bacterial biomass, respectively, relative to control biofilms in spring. In summer, 100 ,g L,1 diclofenac significantly increased bacterial biomass and the nutrient treatment had no significant effect (p < 0.05); both treatments resulted in increased biofilm thickness. The glycoconjugate composition of the exopolysaccharide matrix was influenced differentially by the treatments in both seasons. Biolog assessments of carbon use indicated that 100 ,g L,1 diclofenac or nutrients resulted in significant depressions in the use of carbon sources in summer and significant increases in spring. Impacts on protozoan and micrometazoan populations also were assessed. Denaturing gradient gel electrophoresis analyses of community DNA and fluorescent in situ hybridization studies indicated that diclofenac had significant effects on the nature of the bacterial community in comparison with control and nutrient-treated river biofilm communities. [source]


    Photodegradation of common environmental pharmaceuticals and estrogens in river water

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2005
    Angela Yu-Chen Lin
    Abstract Photodegradation rates of five pharmaceuticals (gemfibrozil, ibuprofen, ketoprofen, naproxen, and propranolol) and of four estrogens (estriol, estrone [E1], 17,-estradiol [E2], and 17,-ethinylestradiol [EE2]), which are common contaminants in the aquatic environment, were measured in both purified and river water at environmentally relevant concentrations (1,2 ,g/L) and different oxygen concentrations. Solutions were irradiated with a xenon arc lamp (765 W/m2; 290 nm < , < 700 nm) and analyzed using a high-performance liquid chromatography-tandem mass spectrometry method with electrospray ionization for pharmaceuticals and atmospheric pressure photoionization for estrogens. In river water, half-lives were 4.1 h for ketoprofen, 1.1 min for propranolol, 1.4 h for naproxen, 2 to 3 h for estrogens, and 15 h for gemfibrozil and ibuprofen. In air-saturated purified water, rates generally were slower except for that of ketoprofen, which reacted with a half-life of 2.5 min. Naproxen, propranolol, and E1 reacted with half-lives of 1.9, 4.4, and 4.7 h, respectively. The EE2, estriol, E2, gemfibrozil, and ibuprofen reacted with half-lives of 28.4, 38.2, 41.7, 91.4, and 205 h, respectively. The presence of oxygen doubled the direct photolysis rates of naproxen and propranolol. In nonautoclaved river water, 80% of E2 rapidly biotransformed to E1 within less than 20 min, whereas all other compounds remained stable over 22 h. [source]


    Timing of exposure to a pulp and paper effluent influences the manifestation of reproductive effects in rainbow trout

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2002
    Michael R. Van den Heuvel
    Abstract Rainbow trout were exposed to a secondary treated, thermomechanical/bleached kraft pulp and paper effluent in 12,000-L, flow-through exposure tanks at an environmental research facility located at a pulp and paper mill in Kawerau, New Zealand. Trout (age, 2+ years) were obtained from a local hatchery and exposed either to upstream river water or a nominal concentration of 12% (v/v) effluent diluted in upstream river water. Three treatment groups were used: Effluent exposure that started approximately three months before gonadal growth (eight-month total exposure), effluent exposure that started approximately halfway through gonadal development (two-month total exposure), and trout exposed to reference water alone for the total duration of the experiment. Trout were sacrificed just before spawning; exposure, growth, and reproductive endpoints were assessed during and at the termination of the experiment. Reduction in growth was observed in both sexes in the eight-month treatment group relative to the river water reference treatment group. No differences were observed in condition factor or liver size in either treatment. Females in the eightmonth exposure group also had significantly lower ovary weight. The two-month exposure group showed no differences from the reference group in growth or somatic indices. Estradiol and testosterone were reduced in blood samples taken from the eight-month exposure group by four months into the experiment as compared to the reference treatment. Steroid and vitellogenin levels in individual female trout from this treatment were significantly correlated with gonadosomatic indices (GSI) measured at the termination of the experiment. The GSI was not correlated strongly or consistently with pregnenolone, nor were any treatment-related pregnenolone differences observed, indicating that the steroid hormone reductions likely were not related to cholesterol side-chain cleavage. Male trout showed significant induction of vitellogenin and lower 11-ketotestosterone during the experiment (only the eight-month group was examined), but this did not result in any significant differences in testes development. Thus, this study has shown an impact of pulp mill effluent exposure on the reproductive physiology of female trout that appeared to be hormonally mediated. Furthermore, the effect could only be manifest when the exposure was initiated before the start of gonad development. [source]


    Development of photosynthetic biofilms affected by dissolved and sorbed copper in a eutrophic river

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2002
    Christiane Barranguet
    Abstract Photosynthetic biofilms are capable of immobilizing important concentrations of metals, therefore reducing bioavailability to organisms. But also metal pollution is believed to produce changes in the microalgal species composition of biofilms. We investigated the changes undergone by natural photosynthetic biofilms from the River Meuse, The Netherlands, under chronic copper (Cu) exposure. The suspended particles in the river water had only a minor effect on reduction of sorption and toxicity of Cu to algae. Biofilms accumulated Cu proportionally to the added concentration, also at the highest concentration used (9 ,M Cu). The physiognomy of the biofilms was affected through the growth of the chain-forming diatom Melosira varians, changing from long filaments to short tufts, although species composition was not affected by the Cu exposure. The Cu decreased phosphate uptake and algal biomass measured as chl a, which degraded exponentially in time. Photosynthetic activity was always less sensitive than algal biomass; the photon yield decreased linearly in time. The protective and insulating role of the biofilm, supported by ongoing autotrophic activity, was indicated as essential in resisting metal toxicity. We discuss the hypothesis that the toxic effects of Cu progress almost independently of the species composition, counteracting ongoing growth, and conclude that autotrophic biofilms act as vertical heterogeneous units. Effective feedback mechanisms and density dependence explain several discrepancies observed earlier. [source]


    Mutagenicity and disinfection by-products in surface drinking water disinfected with peracetic acid

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2002
    Silvano Monarca
    Abstract The aims of this research were to study the influence of peracetic acid (PAA) on the formation of mutagens in surface waters used for human consumption and to assess its potential application for the disinfection of drinking water. The results obtained using PAA were compared to those found with sodium hypochlorite (NaClO) and chlorine dioxide (ClO2). The Ames test, root anaphase aberration assay, and root/micronuclei assay in Allium cepa and Tradescantia/micronuclei test were used to evaluate the mutagenicity of disinfected samples. Microbiological tests were also performed, and disinfection by-products (DBPs) were identified using gas chromatography/mass spectrometry (GC/MS). A slight bacterial mutagenicity was found in raw lake and river water, and similar activity was detected in disinfected samples. A plant test revealed genotoxicity in raw river water, and microbiological analysis showed that PAA has bactericidal activity but lower than that of the other disinfectants. The DBPs produced by PAA were mainly carboxylic acids, which are not recognized as mutagenic, whereas the waters treated with the other disinfectants showed the presence of mutagenic/carcinogenic halogenated DBPs. However, additional experiments should be performed with higher concentrations of PAA and using water with higher organic carbon content to better evaluate this disinfectant. [source]


    Potential for octylphenol to biodegrade in some english rivers

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2000
    Andrew C. Johnson
    Abstract To study octylphenol biodegradation, samples of river water and sediments were taken from the Aire and Calderr vers in the United Kingdom, running through urban/industrial areas, as well as the Thames River running through a more rural area. Using laboratory microcosms, half-lives of 7 to 50 d were obtained for the water samples, with most curves fitting a zero-order reaction. The Calder River was sampled at four separate points along a 45-km length, encompassing rural to increasingly urban/industrial reaches. Little degradation was observed in the sample from the upland/rural reach, while half-lives of 8 to 13 d were seen in the more urban/industrial reaches. Mineralization of the phenyl ring, detected by evolution of 14CO2 from ring-labeled octylphenol, was only observed in water from the Calder River sample. Degradation rate was similar for a range of concentrations from 0.3 to 100 ,,g/L when tested with river water from the Thames River. No degradation was observed over 83 d when bed sediments were spiked with octylphenol and incubated under anaerobic conditions. [source]


    Effects of hydrological processes on the chemical composition of riverine suspended sediment in the Zhujiang River, China

    HYDROLOGICAL PROCESSES, Issue 12 2003
    Quanzhou Gao
    Abstract The chemical composition of riverine suspended sediment is the integration of the weathering crust minerals, soil organic matter and erosion agency within a specific drainage basin, which has been largely disturbed by the human activities. Selected metal elements of the riverine suspended sediment in the Zhujiang River were analysed using inductively coupled plasma,atomic emission spectrometry (ICP,AES) in three different hydrological phases from 1997 to 1998 at Makou and Sanshui hydrographic gauge stations, located at the lower reaches of the two main tributaries of the Zhujiang River, i.e. the Xijiang and the Beijing Rivers respectively. Organic carbon and nitrogen were also analysed using a conventional element analyser. The results demonstrate that the chemical composition of the riverine suspended sediment show obvious variability in different hydrological phases, which closely correlate to the organic matter content in suspended sediment. Intensified erosion in the flood phase results in lower concentration of the organic matter than that in the lower water level phase. The riverine suspended sediment with rich organic matter in the lower water level phase adsorbs some metal elements from the river water. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Uranium and thorium isotopes in the rivers of the Amazonian basin: hydrology and weathering processes

    HYDROLOGICAL PROCESSES, Issue 1 2003
    Aguinaldo N. Marques Jr.
    Abstract Two expeditions (October 1989 and May 1992) were carried out to two points of the main Amazon River channel and four tributaries. The Solimões and Madeira rivers, taking their origin in the Andes, are whitewater rivers. The Negro River is a typical acid, blackwater river. The Trombetas River flows through bauxite-rich areas, and is characterized by low concentrations of dissolved humic substances. The 238U, 234U, 232Th and 230Th activities were recorded from dissolved, suspended particulate phases and river bank sediments. The latter were analysed for their 226Ra, 228Ra and 210Pb contents, and also subjected to leaching with 0·2 M hydroxylamine,hydrochloride solution to determine the concentrations of radionuclides bound to amorphous Fe hydroxides and Mn oxides and hydroxides. The dissolved U average concentration in the Amazon system is ten times lower than the mean world river concentration. The uranium concentration observed at Óbidos in the lower Amazon (0·095 µg L,1), where the U content in the river bank sediments and suspended matter is lowest, suggests U release from the solid phase during river transport. About 485 t of U are transported annually to the Amazon delta area in dissolved form, and 1943 t bound to suspended particulate matter. Total U and Th concentrations in the river bank sediments ranged from 1·59 to 7·14 µg g,1 and from 6·74 to 32 µg g,1, respectively. The highest concentrations were observed in the Trombetas River. The proportion extracted by means of the hydroxylamine solution (HL) was relatively high for U in the Trombetas river bank sediment (31%) and for Th in the Solimões sediment (30%). According to the alpha recoil effects, the 234U/238U activity ratios of the Andean river waters and downstream Amazon water (Óbidos) were >1, but were <1 in the Negro River (at Manaus). The activity ratios of dissolved U correlate with pH and also with the U activity ratios in the river bank sediment hydroxylamine extracts. As expected, the 234U/238U activity ratios in river bank sediments were <1 in the Andean rivers and in the downstream Amazon, but they were >1 in the Trombetas and Negro rivers. Such ratios probably result from the binding of dissolved uranium to solid sediment. The 228Th/232Th ratios of river bank sediments were close to unity (except for the Negro River, where it is lower), suggesting no significant Th exchanges between the river water and the sediment. The 226Ra/232Th activity ratios were <1, and the 226Ra/228Ra activity ratios generally were significantly higher than the activity ratios of their respective parents. This perhaps is the result of easier leaching of the 226Ra parent, 230Th, from solid material (owing to the alpha recoil effect) than of the 228Ra parent. Uranium and thorium isotopes were used as tools to evaluate the chemical weathering rate of rocks in the Amazon system, which was estimated to be 2·7 cm 1000 year,1 s,1. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    The cation and silica chemistry of a Subandean river basin in western Amazonia

    HYDROLOGICAL PROCESSES, Issue 7 2002
    J. A. Sobieraj
    Abstract We sampled river water at 13 locations in the Pichis basin, a 10 500 km2 large rainforest-covered drainage basin in Peru, to assess the influence of lithological variability and seasonality on water chemistry. The concentrations of major cations and silica show a strong seasonal dependence and a remarkable variability over short distances that is only weakly reduced in the wet season; cation concentrations in streams differ by up to 100% within a few kilometres. The lowest cation concentrations were associated with relatively cation-depleted upper Tertiary and lower Quaternary formations, whereas relatively cation-rich lower Tertiary and Jurassic formations left a clear calcium and sodium signal in the respective rivers. Cluster analysis, in conjunction with boxplots, suggests that the sampling locations can be segregated into three groups based on similarities of their geochemical signals. According to the previously defined criteria, one river is classified as a Group 2 river with 200 < TZ+ < 450 µeq/L, whereas all other rivers fall into Group 3 with 450 < TZ+ < 3000 µeq/L (where TZ+ refers to the total cation charge). Based on a comparison with other studies at different sections of the Amazon mainstem, the river chemistry of our study area is relatively enriched in K+, Mg2+ and Ca2+, and, consequently, has a higher TZ+ value, while being relatively depleted in silica. The influence of lithological variability on water chemistry must be considered in land-use change studies even at watershed areas of 26,3382 km2. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Density-dependent surface water,groundwater interaction and nutrient discharge in the Swan,Canning Estuary

    HYDROLOGICAL PROCESSES, Issue 13 2001
    Anthony J. Smith
    Abstract Salinity in the Swan,Canning Estuary, Western Australia, varies seasonally from freshwater conditions in winter up to the salinity of seawater in summer. Field observations show that the resulting seasonal density contrasts between the estuary and the adjacent fresh groundwater system are sufficient to drive mixed-convection cells that give rise to circulation of river water in the aquifer. In this study, we examine the role of steady density-driven convection as a mechanism that contributes to the exchange of dissolved nutrients, particularly ammonium, between the Swan,Canning Estuary and the local groundwater system. We present results from two-dimensional (section) and three-dimensional density-coupled flow and mass transport modelling, in comparison with Glover's abrupt-interface solution for saltwater intrusion. The modelling is focused on developing an understanding of the physical processes that influence the long-term or mean convective behaviour of groundwater beneath the estuary. It is shown that the convective stability depends fundamentally on the interplay between two factors: (1) the downward destabilizing buoyancy effect of density contrasts between the estuary and aquifer; and (2) the upward stabilizing influence of regional groundwater discharge. The structure of convection cells beneath the estuary and recirculation rates of estuary water within the groundwater system are shown to be related to a flow-modified Rayleigh number that depends critically on the aquifer anisotropy and estuary meander pattern. The recirculation of estuary water by these mechanisms is responsible for transport of high concentrations of ammonium, observed in pore fluids in the estuary bed sediments, into groundwater and its eventual return to the estuary. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Temporal Dynamics of River Biofilm in Constant Flows: A Case Study in a Riverside Laboratory Flume

    INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 2 2010
    Stéphanie Boulźtreau
    Abstract A 15-week experiment was performed in a riverside laboratory flume (with diverted river water) to check variations of river biofilm structure (biomass, algal and bacterial compositions) and function (community gross primary production GPP and respiration) under constant flow while water quality went through natural temporal variations. One major suspended matter pulse coinciding with one river flood was recorded after 10 weeks of experiment. Epilithic biofilm first exhibited a 10-week typical pattern of biomass accrual reaching 33 g ash-free dry matter (AFDM) m,2 and 487 mg chlorophyll- a m,2 and then, experienced a shift to dominance of loss processes (loss of 60% AFDM and 80% chlorophyll- a) coinciding with the main suspended matter pulse. Algal diversity remained low and constant during the experiment: Fragilaria capucina and Encyonema minutum always contribute over 80% of cell counts. DGGE banding patterns discriminated between two groups that corresponded to samples before and after biomass loss, indicating major changes in the bacterial community composition. GPP/R remained high during the experiment, suggesting that photoautotrophic metabolism prevailed and detachment was not autogenic (i.e., due to algal senescence or driven by heterotrophic processes within the biofilm). Observational results suggested that silt deposition into the biofilm matrix could have triggered biomass loss. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    The occurrence of Campylobacter in river water and waterfowl within a watershed in southern Ontario, Canada

    JOURNAL OF APPLIED MICROBIOLOGY, Issue 3 2010
    M.I. Van Dyke
    Abstract Aims:, Quantitative PCR and a culture method were used to investigate Campylobacter occurrence over 3 years in a watershed located in southern Ontario, Canada that is used as a source of drinking water. Methods and Results:, Direct DNA extraction from river water followed by quantitative PCR analysis detected thermophilic campylobacters at low concentrations (<130 cells 100 ml,1) in 57,79% of samples taken from five locations. By comparison, a culture-based method detected Campylobacter in 0,23% of samples. Water quality parameters such as total Escherichia coli were not highly correlated with Campylobacter levels, although higher pathogen concentrations were observed at colder water temperatures (<10°C). Strains isolated from river water were primarily nalidixic acid-susceptible Campylobacter lari, and selected isolates were identified as Campylobacter lari ssp. concheus. Campylobacter from wild birds (seagulls, ducks and geese) were detected at a similar rate using PCR (32%) and culture-based (29%) methods, and although Campylobacter jejuni was isolated most frequently, C. lari ssp. concheus was also detected. Conclusions:,Campylobacter were frequently detected at low concentrations in the watershed. Higher prevalence rates using quantitative PCR was likely because of the formation of viable but nonculturable cells and low recovery of the culture method. In addition to animal and human waste, waterfowl can be an important contributor of Campylobacter in the environment. Significance and Impact of the Study:, Results of this study show that Campylobacter in surface water can be an important vector for human disease transmission and that method selection is important in determining pathogen occurrence in a water environment. [source]


    Occurrence and distribution of culturable enteroviruses in wastewater and surface waters of north-eastern Spain

    JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2008
    A. Costįn-Longares
    Abstract Aims:, Update information regarding occurrence and levels of culturable enteroviruses in several types of surface polluted waters in north-eastern Spain and determine the proportion of the different species and serotypes. Methods and Results:, The best procedures on hand in our laboratory for concentrating and quantifying culturable enteroviruses from different water sample types were used. Sequencing was used for typing the virus isolates. Geometric means of enteroviruses densities expressed in plaque forming units per litre were 968 in raw sewage, 12·51 in secondary effluents, 0·017 in tertiary effluents, 0·4 in river water and 0·36 in seawater. Enterovirus densities in wastewater revealed certain seasonality with a maximum at the end of spring , beginning of the summer. Coxsackievirus B, and amid them serotype CB4, were the most abundant species and serotypes detected. Conclusions:, Densities of enteroviruses in different north-eastern Spain surface waters are similar to those present in industrialized countries with temperate climate. No wild polioviruses were detected. Distribution of species showed a clear prevalence of coxsackieviruses. Significance and Impact of the Study:, Information regarding enteroviruses in this geographical area provides valuable information to estimate the risk of enteroviruses transmission through water and for complementing clinical epidemiological data. [source]


    Quantitative analysis of human enteric adenoviruses in aquatic environments

    JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2007
    E. Haramoto
    Abstract Aims:, The aim of this study was to determine human adenoviruses (HuAdVs) in aquatic environments by real-time polymerase chain reaction (PCR). Methods and Results:, In order to describe the ratio of enteric serotypes to the total HuAdVs, the primer set specific for the enteric serotypes 40 and 41 was used in parallel with the universal primer set for all 51 serotypes of HuAdVs. The enteric serotypes of HuAdVs were detected at the concentration of 7·3,1500 PCR-detection units (PDU) per ml in raw sewage (n = 17), 0·00060,4·1 PDU ml,1 in secondary-treated sewage before chlorination (n = 17), 0·0018,7·0 PDU ml,1 in river water (n = 36), and 0·032,6·1 PDU ml,1 in seawater (n = 18). The concentration of HuAdVs, determined by the universal primer set, was equivalent to that of enteric serotypes in almost all the samples tested. Conclusions:, Enteric serotypes were predominant among all serotypes of HuAdVs in the aquatic environments. Significance and Impact of the Study:, The abundance of enteric serotypes of HuAdVs should be more emphasized than other serotypes in order to assess the risk of their infection via water. [source]


    Occurrence of Cryptosporidium spp. oocysts in raw and treated sewage and river water in north-eastern Spain

    JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2005
    M. Montemayor
    Abstract Aims:, To determine the occurrence and levels of Cryptosporidium parvum oocysts in wastewater and surface waters in north-eastern Spain. Methods and Results:, Samples from five sewage treatment plants were taken monthly and quarterly during 2003. In addition, water was collected monthly from the River Llobregat (NE Spain) during the period from 2001 to 2003. All samples were analysed by filtration on cellulose acetate filters or through EnvirocheckTM using EPA method 1623, followed by immunomagnetic separation and examination by laser scanning cytometry. All raw sewage, secondary effluent and river water samples tested were positive for Cryptosporidium oocysts. Of the tertiary sewage effluents tested, 71% were positive for Cryptosporidium oocysts. The proportion of viable oocysts varied according to the sample. Conclusions:, Two clear maxima were observed during spring and autumn in raw sewage, showing a seasonal distribution and a correlation with the number of cryptosporidiosis cases and rainfall events. Significance and Impact of the Study:, This study provides the first data on the occurrence of Cryptosporidium oocysts in natural waters in north-eastern Spain. [source]