River Restoration (river + restoration)

Distribution by Scientific Domains

Terms modified by River Restoration

  • river restoration project

  • Selected Abstracts


    River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice?

    FRESHWATER BIOLOGY, Issue 2010
    MARGARET A. PALMER
    Summary 1. Stream ecosystems are increasingly impacted by multiple stressors that lead to a loss of sensitive species and an overall reduction in diversity. A dominant paradigm in ecological restoration is that increasing habitat heterogeneity (HH) promotes restoration of biodiversity. This paradigm is reflected in stream restoration projects through the common practice of re-configuring channels to add meanders and adding physical structures such as boulders and artificial riffles to restore biodiversity by enhancing structural heterogeneity. 2. To evaluate the validity of this paradigm, we completed an extensive evaluation of published studies that have quantitatively examined the reach-scale response of invertebrate species richness to restoration actions that increased channel complexity/HH. We also evaluated studies that used manipulative or correlative approaches to test for a relationship between physical heterogeneity and invertebrate diversity in streams that were not in need of restoration. 3. We found habitat and macroinvertebrate data for 78 independent stream or river restoration projects described by 18 different author groups in which invertebrate taxa richness data in response to the restoration treatment were available. Most projects were successful in enhancing physical HH; however, only two showed statistically significant increases in biodiversity rendering them more similar to reference reaches or sites. 4. Studies manipulating structural complexity in otherwise healthy streams were generally small in scale and less than half showed a significant positive relationship with invertebrate diversity. Only one-third of the studies that attempted to correlate biodiversity to existing levels of in-stream heterogeneity found a positive relationship. 5. Across all the studies we evaluated, there is no evidence that HH was the primary factor controlling stream invertebrate diversity, particularly in a restoration context. The findings indicate that physical heterogeneity should not be the driving force in selecting restoration approaches for most degraded waterways. Evidence suggests that much more must be done to restore streams impacted by multiple stressors than simply re-configuring channels and enhancing structural complexity with meanders, boulders, wood, or other structures. 6. Thematic implications: as integrators of all activities on the land, streams are sensitive to a host of stressors including impacts from urbanisation, agriculture, deforestation, invasive species, flow regulation, water extractions and mining. The impacts of these individually or in combination typically lead to a decrease in biodiversity because of reduced water quality, biologically unsuitable flow regimes, dispersal barriers, altered inputs of organic matter or sunlight, degraded habitat, etc. Despite the complexity of these stressors, a large number of stream restoration projects focus primarily on physical channel characteristics. We show that this is not a wise investment if ecological recovery is the goal. Managers should critically diagnose the stressors impacting an impaired stream and invest resources first in repairing those problems most likely to limit restoration. [source]


    Fluvial Geomorphology and River Management

    GEOGRAPHICAL RESEARCH, Issue 3 2000
    I. Douglas
    Australian river landscapes offer many challenges for management. Much Australian river research is novel, but practical concerns have always had an influence on the research agenda. Australia's distinctive contributions to fluvial geomorphology include recognition of the great age of many fluvially eroded landscapes; understanding complex levee, terrace and valley fill sequences; analysing the impacts of rare major floods; interpreting the effects of impoundment, mining and urbanisation; and understanding the great anastomosing inland river systems. River restoration is now a major theme in the literature of river engineering, fluvial geomorphology and landscape design. Great achievements are occurring in geo-ecological river management and engineering. Changing people's thinking is becoming at least as important as gaining new scientific knowledge. The existing understanding needs to be more widely shared and enhanced by greater involvement with Asian countries where river management issues daily affect the lives of millions of people. [source]


    Public Values for River Restoration Options on the Middle Rio Grande

    RESTORATION ECOLOGY, Issue 6 2009
    Matthew A. Weber
    Abstract River restoration is a widespread phenomenon. This reflects strong public values for conservation, though missing are studies explicitly justifying restoration expenditures. Public restoration benefits are not well quantified, nor are public preferences among diverse activities falling into the broad category "restoration." Our study estimates public values for restoration on the Middle Rio Grande, New Mexico. Stakeholder meetings and public focus groups guided development of a restoration survey mailed to Albuquerque area households. Four restoration categories were defined: fish and wildlife; vegetation density; tree type; and natural river processes. Survey responses supplied data for both choice experiment (CE) and contingent valuation (CV) analyses, two established environmental economics techniques for quantifying public benefits of conservation policies. Full restoration benefits are estimated at over $150 per household per year via the CE and at nearly $50 per household per year via CV. The CE allows value disaggregation among different restoration categories. The most highly valued category was tree type, meaning reestablishing native tree dominance for such species as Cottonwood (Populus deltoides) and eradicating non-native trees such as Saltcedar (Tamarix ramosissma). The high public values we have found for restoration offer economic justification for intensive riparian management, particularly native plant-based restoration in the Southwest. [source]


    Triage: Appropriate for prioritizing community funded river restoration projects, but not for advancing the science of river restoration

    ECOLOGICAL MANAGEMENT & RESTORATION, Issue 1 2004
    Robyn J. Watts
    No abstract is available for this article. [source]


    A comparative analysis of restoration measures and their effects on hydromorphology and benthic invertebrates in 26 central and southern European rivers

    JOURNAL OF APPLIED ECOLOGY, Issue 3 2010
    Sonja C. Jähnig
    Summary 1.,Hydromorphological river restoration usually leads to habitat diversification, but the effects on benthic invertebrates, which are frequently used to assess river ecological status, are minor. We compared the effects of river restoration on morphology and benthic invertebrates by investigating 26 pairs of non-restored and restored sections of rivers in Austria, Czech Republic, Germany, Italy and the Netherlands. 2.,Sites were grouped according to (1) region: central Europe vs. southern Europe; (2) river type: mountain vs. lowland rivers; (3) restoration approach: active vs. passive restoration and (4) a combination of these parameters. All sites were sampled according to the same field protocol comprising hydromorphological surveys of river and floodplain mesohabitats, microhabitats at the river bottom and habitat-specific sampling of benthic invertebrates. Restoration effects were compared using Shannon,Wiener Indices (SWIs) of mesohabitats, microhabitats and invertebrate communities. Differences in metric values between non-restored and restored sites were compared for 16 metrics that evaluated hydromorphology and the benthic invertebrate community. 3.,Mean SWIs differed for both mesohabitats (1·1 non-restored, 1·7 restored) and microhabitats (1·0 non-restored, 1·3 restored), while SWIs for invertebrate communities were not significantly different (2·4 non-restored, 2·3 restored). Meso- and microhabitat metrics in the restored sections were usually higher compared with the non-restored sections, but the effects on invertebrate metrics were negligible. 4.,Measures in southern Europe and mountainous regions yielded larger differences between non-restored and restored sections of rivers. Differences in the meso- and microhabitat metrics were largest for actively restored sections of central European mountain rivers and rivers from southern Europe, followed by passively restored mountain rivers in central Europe. The smallest differences were observed for lowland sites. There was no significant restoration effect on invertebrate metrics in any categories. 5.,Synthesis and applications. Restoration measures addressing relatively short river sections (several hundred metres) are successful in terms of improving habitat diversity of the river and its floodplain. Active restoration measures are suitable if short-term changes in hydromorphology are desired. To realize changes in benthic invertebrate community composition, habitat restoration within a small stretch is generally not sufficient. We conclude that restoring habitat on a larger scale, using more comprehensive measures and tackling catchment-wide problems (e.g. water quality, source populations) are required for a recovery of the invertebrate community. [source]


    Guidelines for restoring connectivity around water mills: a population genetic approach to the management of riverine fish

    JOURNAL OF APPLIED ECOLOGY, Issue 3 2009
    Joost A. M. Raeymaekers
    Summary 1While freshwater systems provide important goods and services for society, they are threatened by human activity. Fragmentation is one of the most serious ecological concerns in the riverine environment. 2Historical and cultural values may conflict with nature restoration. Here we use the Zwalm sub-basin (Scheldt basin, Belgium) as a case study for reconciling the restoration of the native fish fauna with the preservation of historical water mills (320,1000 years old). 3We assessed the genetic structure of a barrier-sensitive species, the three-spined stickleback Gasterosteus aculeatus, to estimate the impact of fragmentation on a local to catchment scale. We show how population genetic approaches may be used to generate guidelines for restoration and management, and advance the science of river restoration. 4Dispersal was lower in above- than in below-mill populations, and water mills provoked an average loss of almost 4% of the genetic variation. This loss accumulated to 40% over the entire system (~23 km, 13 barriers). The impact of individual mills strongly increased with upstream distance and water mill height. One mill provoked significant genetic differentiation, despite the presence of a fish passage. 5This detailed picture of the genetic connectivity in stickleback is indicative for the basin's depauperate fauna. Many species share the same migratory pathways and barriers to dispersal. The physical properties of the water mills are likely to have similar effects on species with a similar genetic structure to stickleback. 6Synthesis and applications. Population genetic studies may be particularly useful during the planning of river restoration and associated ecological studies. In the case of the Zwalm sub-basin, we propose a number of management actions, such as building new fish passages and translocating individuals to above-mill populations. These will counter the negative impact of the water mills on the genetic variation in aquatic fauna, whilst retaining their cultural,economical value and limiting the restoration costs. Simulations suggest that reassessment of stickleback genetic structure after a decade should reveal whether or not restoration actions have been effective. [source]


    Current issues with fish and fisheries: editor's overview and introduction

    JOURNAL OF APPLIED ECOLOGY, Issue 2 2003
    S. J. Ormerod
    Summary 1.,By any measure, fishes are among the world's most important natural resources. Annual exploitation from wild populations exceeds 90 million tonnes, and fish supply over 15% of global protein needs as part of total annual trade exceeding $US 55 billion. Additionally, with over 25 000 known species, the biodiversity and ecological roles of fishes are being increasingly recognised in aquatic conservation, ecosystem management, restoration and aquatic environmental regulation. 2.,At the same time, substantial management problems now affect the production, exploitable stocks, global diversity, trophic structure, habitat quality and local composition of fish communities. 3.,In marine systems, key issues include the direct effects of exploitation on fish, habitats and other organisms, while habitat or water quality problems arise also from the atmospheric, terrestrial and coastal environments to which marine systems are linked. In freshwaters, flow regulation and obstruction by dams, fragmentation, catchment management, pollution, habitat alterations, exotic fish introductions and nursery-reared fish are widespread issues. 4.,Management responses to the problems of fish and fisheries include aquatic reserves in both marine and freshwater habitats, and their effectiveness is now being evaluated. Policies on marine exploitation increasingly emphasise fishes as integral components of aquatic ecosystems rather than individually exploitable stocks, but the rationalisation of fishing pressures presents many challenges. In Europe, North America and elsewhere, policies on freshwaters encourage habitat protection, integrated watershed management and restoration, but pressures on water resources will cause continued change. All these management approaches require development and evaluation, and will benefit from a perspective of ecological understanding with ecologists fully involved. 5.,Synthesis and applications. Although making a small contribution to the Journal of Applied Ecology in the past, leading work on aquatic problems and fish-related themes appear increasingly in this and other mainstream ecology journals. As this special profile of five papers shows, significant contributions arise on diverse issues that here include the benefit of aquatic reserves, river restoration for fish, the accumulation of contaminants, interactions with predators, and the fitness of salmonids from nurseries. This overview outlines the current context in which papers on the applied ecology of fish and fisheries are emerging, and it identifies scope for further contributions. [source]


    Responses of riparian plants to flooding in free-flowing and regulated boreal rivers: an experimental study

    JOURNAL OF APPLIED ECOLOGY, Issue 6 2002
    M. E. Johansson
    Summary 1The long history of river regulation has resulted in extensively changed ecosystem structures and processes in rivers and their associated environments. This fact, together with changing climatic and hydrological conditions, has increased the need to recover the natural functions of rivers. To develop guidelines for river restoration, comparative ecological experiments at contrasting water-level regimes are needed. We compared growth and survival of transplanted individuals of four riparian plant species (Betula pubescens, Carex acuta, Filipendula ulmaria and Leontodon autumnalis) over 2 years on four free-flowing and four regulated riverbank sites in northern Sweden. The species were chosen as representatives of dominating life-forms and species traits on different elevations of the riverbanks. 2In Betula and Filipendula, mean proportional growth rates were significantly higher at free-flowing sites than at regulated sites, whereas no consistent differences between free-flowing and regulated sites were found in Carex and Leontodon. Differences among species were generally in accordance with natural distribution patterns along riverbank elevation gradients and with experimental evidence on flooding tolerance, although plants of all species survived and even showed positive growth rates on elevations below their natural range of occurrence. 3Partial least squares regression was used to relate plant performance (growth and survival) to duration, frequency and timing of flooding at the different sites. Flood duration and frequency typically reduced performance in all species and during all time periods, although to various degrees. Flood events early in the experiment determined the outcome to a high degree at all sites. Variables indicating a regulated regime were mostly negatively related to plant performance, whereas free-flowing regime variables were positively related to plant performance. 4We used two of the regression models generated from our data with an acceptably high predictive power to simulate a hypothetical re-regulation scenario in run-of-river impoundments. With an overall reduction in flooding duration and frequency of 50,75%, plant performance of Filipendula at low riverbank elevations showed predicted increases of about 20,30%, levelling off to zero at the highest elevations. Reductions in summer floods represented about one-third to half of this increase. 5We conclude that for a range of species individual plant performance is clearly reduced on banks of impoundments and storage reservoirs due to changes in the water-level regime. Furthermore, our model simulation suggests that rather substantial reductions of flood duration and frequency are needed to improve plant performance on riverbanks upstream from dams in impounded rivers. River restoration principles should, however, be based on a combination of experimental data on plant performance of individual species and observed long-term changes in plant communities of regulated rivers. Consequently, successful re-regulation schemes in boreal rivers should include both reductions of summer and winter floods as well as re-introduced spring floods. [source]


    Integrated catchment management in semiarid environments in the context of the European Water Framework Directive

    LAND DEGRADATION AND DEVELOPMENT, Issue 4 2006
    J. B. Thornes
    Abstract Two recent developments draw attention to the need for integrated catchment management. First is the European Union's (EU) Water Framework Directive (WFD), which insists on an integrated catchment management plan for each European river basin within the next 15 years. Second is the current trend for river restoration; practitioners have concluded that this can only be achieved through a thorough appreciation of the integrated character of catchments. This paper addresses the question as to whether it makes sense to apply the WFD methodology across the range of European catchments and, in particular, what special provisions need to be made for dry Mediterranean catchments. The Southern European rivers are episodic. They yield high and coarse sediment loads and some are still used as waste repositories. They interact intermittently with groundwater. Reference conditions, both geometrical and water quality, require different measures and observations from those of the temperate and Arctic régime rivers that dominate much of the rest of the EU. These properties are identified and discussed with reference to nested subcatchments of the River Segura in the Province of Murcia, Spain. New research in the Nogalte sub-basin demonstrates a possible ,reference site' for this environment. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Embedding a strategic approach to river restoration in operational management processes , experiences in England,

    AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue S1 2010
    Chris P. Mainstone
    Abstract 1. The restoration of riverine habitats that have been physically modified by man has gained momentum over the past two decades, driven by a number of objectives. Formalizing the planning and implementation of such activity, however, so that it demonstrably meets national and local environmental objectives without compromising essential societal needs such as flood risk management, has proved problematic. 2. This paper addresses the operational realities of river restoration in the UK as experienced in England by the authors, and in doing so attempts to provide a vision for how strategic planning and implementation of restoration measures sensitive to these realities might be introduced. Specifically, the paper explores: the prevailing perspectives on river restoration, shaped by both legislative drivers for ecosystem and biodiversity protection and the multiple uses made of rivers, their floodplains and catchments; how decisions have tended to be made to date and how the government agencies for environmental protection and biodiversity conservation in England are planning to make decisions in the future; the key obstacles to putting in place scientifically and technically robust, large-scale, long-term, economically viable plans for river restoration; the potential for using rivers with special conservation designations for wildlife as a springboard for a strategic approach to river restoration more widely. 3. The issues hindering a strategic operational approach to river restoration in England are common to the rest of the UK and other developed countries grappling with the enormity of the river restoration challenge. To make real progress with river restoration, an operational decision-making framework is needed that promotes progressive and strategic action but at the same time gives everyone confidence that such action is realistic and worthwhile. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Surface water balance to evaluate the hydrological impacts of small instream diversions and application to the Russian River basin, California, USA

    AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 3 2009
    Matthew J. Deitch
    1.Small streams are increasingly under pressure to meet water needs associated with expanding human development, but the hydrologic and ecological effects are not commonly described in scientific literature. 2.To evaluate the potential effects that surface water abstraction can have on flow regime, scientists and resource managers require tools that compare abstraction to stream flow at ecologically relevant time scales. 3.The classic water balance model was adapted to evaluate how small instream diversions can affect catchment stream-flow; the adapted model maintains the basic mass balance concept, but limits the parameters and considers surface water data at an appropriate timescale. 4.This surface water balance was applied to 20 Russian River tributaries in north-central California to evaluate how recognized diversions can affect stream flow throughout the region. 5.The model indicates that existing diversions have little capacity to influence peak or base flows during the rainy winter season, but may reduce stream flow during spring by 20% in one-third of all the study streams; and have the potential to accelerate summer intermittence in 80% of the streams included in this study. 6.The surface water balance model may be especially useful for guiding river restoration from a hydrologic perspective: it can distinguish among streams with high diversion regimes that may require more than just physical channel restoration to provide ecological benefits, and can illustrate the extent to which changing the diversion parameters of particular water users can affect the persistence of a natural flow regime. 7.As applied to Russian River tributaries, the surface water balances suggest that reducing demand for stream flow in summer may be as important as physical channel restoration to restoring anadromous salmonids in this region. Copyright © 2009 John Wiley & Sons, Ltd. [source]