Home About us Contact | |||
Risk Assessment Methodology (risk + assessment_methodology)
Selected AbstractsRisk assessment methodologies for predicting phosphorus losses,JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2003Oscar F. Schoumans Abstract Risk assessment parameters are needed to assess the contribution of phosphorus (P) losses from soil to surface water, and the effectiveness of nutrient and land management strategies for the reduction of P loss. These parameters need to take into account the large temporal and spatial variation in P transfer from individual fields arising from (a) changing but predictable factors such as land use, soil P status, P application rates, forms and ways of fertilization and spreading, (b) predictable but inherent factors such as soil type, soil dispersivity, slope and hydrological routing, and (c) unpredictable weather factors such as rainfall amount and intensity. In most situations, water transport is the driving force of P loss from agricultural land to surface water. Therefore, the hydrological pathways determine to a large extent the relevance of these different factors. Over the last decade several soil P tests have been proposed as a first step to link field conditions to risk of P loss. The major reason is that these soil P tests are also meaningful in discussions with farmers. Recently, more complex P loss risk parameters have been derived based on different approaches. However, the scope and purposes of these P loss risk parameters vary remarkably. Finally, there is a need to evaluate the usefulness of new P tests that can be used as an indicator of P loss risk, e.g. in relation to monitoring purposes. The implementation of the EU Water Framework Directive will increase this need. In this paper, the practicable applicability of P parameters for risk assessment is discussed in relation to purpose, scale (from field, farm to catchment), effectiveness, sensibility etc. Furthermore, a conceptual framework for P indicators is presented and evaluated, based on the outcome of the presentations and the discussions in Zurich. No translation. [source] Adopting Lead-Free Electronics: Policy Differences and Knowledge GapsJOURNAL OF INDUSTRIAL ECOLOGY, Issue 4 2004Julie M. Schoenung For more than a decade, the use of lead (Pb) in electronics has been controversial: Indeed, its toxic effects are well documented, whereas relatively little is known about proposed alternative materials. As the quantity of electronic and electrical waste (e-waste) increases, legislative initiatives and corporate marketing strategies are driving a reduction in the use of some toxic substances in electronics. This article argues that the primacy of legislation over engineering and economics may result in selecting undesirable replacement materials for Pb because of overlooked knowledge gaps. These gaps include the need for: assessments of the effects of changes in policy on the flow of e-waste across state and national boundaries; further reliability testing of alternative solder alloys; further toxicology and environmental impact studies for high environmental loading of the alternative solders (and their metal components); improved risk assessment methodologies that can capture complexities such as changes in waste management practices, in electronic product design, and in rate of product obsolescence; carefully executed allocation methods when evaluating the impact of raw material extraction; and in-depth risk assessment of alternative end-of-life (EOL) options. The resulting environmental and human health consequences may be exacerbated by policy differences across political boundaries. To address this conundrum, legislation and policies dealing with Pb in electronics are first reviewed. A discussion of the current state of knowledge on alternative solder materials relative to product design, environmental performance, and risk assessment follows. Previous studies are reviewed, and consistent with their results, this analysis finds that there is great uncertainty in the trade-offs between Pb-based solders and proposed replacements. Bridging policy and knowledge gaps will require increased international cooperation on materials use, product market coverage, and e-waste EOL management. [source] Selenium effects: A weight-of-evidence approachINTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT, Issue 1 2007Blair G McDonald Abstract Selenium is increasingly an issue for a wide range of mining, industrial, and agricultural operations. Appropriate methods for evaluating the impacts of selenium in aquatic ecosystems are vigorously debated in the literature. Two common approaches include the use of tissue residue guidelines and reproductive toxicity testing using field-collected fish; however, each approach on its own does not provide sufficient evidence that wild fish populations are in fact impaired. The limitations of each method are discussed, and recommendations to improve the relevance of each line of evidence are provided. A 3rd line of evidence, field measurement of fish population dynamics, is proposed and also discussed. A framework, consistent with an ecological risk assessment methodology, for the design, application, and interpretation of selenium weight-of-evidence investigations is proposed. [source] Major hazard risk assessment for existing and new facilitiesPROCESS SAFETY PROGRESS, Issue 4 2004Katherine (Kate) Filippin This paper outlines a risk assessment methodology that has been developed through work with major hazard facilities, including ammonia plants in Australia, satisfying regulations equivalent to the European Seveso II Directive. The methodology is an approach for ensuring an undertaking of effectively assessing the risks associated with major hazards that will not only satisfy regulations and corporate requirements, but also, more importantly, provide a framework for sustainable business processes, by enabling the methodology to be integrated into normal business management processes. The approach enables existing management systems to be effectively incorporated into the evaluation processes. Common pitfalls encountered during the risk assessment process are also discussed. © 2004 American Institute of Chemical Engineers Process Saf Prog, 2004 [source] |