Home About us Contact | |||
Rigid Block (rigid + block)
Selected AbstractsAssembly of Dinuclear CuII Rigid Blocks by Bridging Azido or Poly(thiocyanato)chromates: Synthesis, Structures and Magnetic Properties of Coordination Polymers and Polynuclear ComplexesEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 8 2010Sergey V. Kolotilov Abstract Reaction of a dinuclear cationic copper(II) complex of 4,4,-[2-(3-hydroxyiminobutyl)imino]biphenyl [CuII2(LH)2]2+ with N3, resulted in the formation of a dinuclear azido [CuII2(LH)2(N3)2(H2O)2] complex or a 2D coordination polymer [CuII2(LH)2(N3)2]n. Reaction of the dinuclear complex with [CrIII(NCS)6]3, or [CrIII(NCS)4(NH3)2], produced a 2D polymer {[CuII2(LH)2(CH3CN)2]3[CrIII(NCS)6]2}n or a 1D chain, constructed from tetranuclear units {[CuII2(LH)2][CrIII(NCS)4(NH3)2]2}n. Structures of the compounds were determined by X-ray crystallography and complexes were characterised by the temperature dependency of the magnetic susceptibility and by ESR spectroscopy. Magnetic properties of homometallic compounds were fit with the model of a dimer with the Hamiltonian , = ,J,1·,2. For heterometallic complexes ,MT curves were fit as the superposition of magnetism resulting from both [CuII2(LH)2]2+ and the adjacent CrIII -containing anion. J values for the complexes lie in the range from ,12.74(4) to ,17.77(8) cm,1. It was shown that the 4,4,-biphenyl bridge efficiently mediates exchange interactions. [source] Response analysis of rigid structures rocking on viscoelastic foundationEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 7 2008Alessandro Palmeri Abstract In this paper the rocking response of slender/rigid structures stepping on a viscoelastic foundation is revisited. The study examines in depth the motion of the system with a non-linear analysis that complements the linear analysis presented in the past by other investigators. The non-linear formulation combines the fully non-linear equations of motion together with the impulse-momentum equations during impacts. The study shows that the response of the rocking block depends on the size, shape and slenderness of the block, the stiffness and damping of the foundation and the energy loss during impact. The effect of the stiffness and damping of the foundation system along with the influence of the coefficient of restitution during impact is presented in rocking spectra in which the peak values of the response are compared with those of the rigid block rocking on a monolithic base. Various trends of the response are identified. For instance, less slender and smaller blocks have a tendency to separate easier, whereas the smaller the angle of slenderness, the less sensitive the response to the flexibility, damping and coefficient of restitution of the foundation. Copyright © 2008 John Wiley & Sons, Ltd. [source] 2D modelling of a dry joint masonry wall retaining a pulverulent backfillINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 12 2010A. S. Colas Abstract This work focuses on an analysis of dry joint retaining structures based on yield design theory: the stability of the masonry is assessed using rigid block and shear failure mechanisms in the wall and its backfill. An application of this simulation on 2D scale-down brick and wood models is then addressed, showing close agreement between theoretical predictions and experimental results. Further development on this work, including application of this theory on dry-stone retaining walls, is discussed as a conclusion. Copyright © 2009 John Wiley & Sons, Ltd. [source] Analysis of single rock blocks for general failure modes under conservative and non-conservative forcesINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 14 2007F. Tonon Abstract After describing the kinematics of a generic rigid block subjected to large rotations and displacements, the Udwadia's General Principle of Mechanics is applied to the dynamics of a rigid block with frictional constraints to show that the reaction forces and moments are indeterminate. Thus, the paper presents an incremental-iterative algorithm for analysing general failure modes of rock blocks subject to generic forces, including non-conservative forces such as water forces. Consistent stiffness matrices have been developed that fully exploit the quadratic convergence of the adopted Newton,Raphson iterative scheme. The algorithm takes into account large block displacements and rotations, which together with non-conservative forces make the stiffness matrix non-symmetric. Also included in the algorithm are in situ stress and fracture dilatancy, which introduces non-symmetric rank-one modifications to the stiffness matrix. Progressive failure is captured by the algorithm, which has proven capable of detecting numerically challenging failure modes, such as rotations about only one point. Failure modes may originate from a limit point or from dynamic instability (divergence or flutter); equilibrium paths emanating from bifurcation points are followed by the algorithm. The algorithm identifies both static and dynamic failure modes. The calculation of the factor of safety comes with no overhead. Examples show the equilibrium path of a rock block that undergoes slumping failure must first pass through a bifurcation point, unless the block is laterally constrained. Rock blocks subjected to water forces (or other non-conservative forces) may undergo flutter failure before reaching a limit point. Copyright © 2007 John Wiley & Sons, Ltd. [source] THE GEOLOGY AND HYDROCARBON HABITAT OF THE SARIR SANDSTONE, SE SIRT BASIN, LIBYAJOURNAL OF PETROLEUM GEOLOGY, Issue 2 2000G. Ambrose The Jurassic , Lower Cretaceous Sarir Sandstone Cformerly known as the Nubian Sandstone) in the SE Sirt Basin is composed of four members which can be correlated regionally using a lithostratigraphic framework. These synrift sandstones unconformably overlie a little known pre-rift succession, and are in turn unconformably overlain by post-rift marine shales of Late Cretaceous age. Within the Sarir Sandstone are two sandstone-dominated members, each reflecting a rapid drop in base level, which are important oil reservoirs in the study area. Between these sandstones are thick shales of continental origin which define the architecture of the reservoir units. This four-fold lithostratigraphic subdivision of the Sarir Sandstone contrasts with previous schemes which generally only recognised three members. The sandstones below the top-Sarir unconformity host in excess of 20 billion barrels of oil in-place. The dominant traps are structural (e.g. Sarir C field), stratigraphic (e.g. Messla field), hanging-wall fault plays (e.g. UU1,65 field) and horst-block plays (e.g. Calanscio field). Three Sarir petroleum systems are recognised in the SE Sirt Basin. The most significant relies on post-rift (Upper Cretaceous) shales, which act as both source and seal. The Variegated Shale Member of the Sarir Sandstone may also provide source and seal; while a third, conceptual petroleum system requires generation of non-marine oils from pre-rift (?Triassic) source rocks in the axis of the Sarir Trough. The intrabasinal Messla High forms a relatively rigid block at the intersection of two rift trends, around which stress vectors were deflected during deposition of the syn-rift Sarir Sandstone. Adjacent troughs accommodated thick, post-rift shale successions which comprise excellent source rocks. Palaeogene subsidence facilitated oil generation, and the Messla High was a focus for oil migration. Wrenching on master faults with associated shale smear has facilitated fault seal and the retention of hydrocarbons. In the Calanscio area, transpressional faulting has resulted in structural inversion with oil entrapment in "pop-up" horst blocks. Elsewhere, transtensional faulting has resulted in numerous fault-dependent traps which, in combination with stratigraphic and truncation plays, will provide the focus for future exploration. [source] Failure of masonry arches under impulse base motionEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 14 2007Laura De Lorenzis Abstract Recent seismic events have caused damage or collapse of invaluable historical buildings, further proving the vulnerability of unreinforced masonry (URM) structures to earthquakes. This study aims to understand failure of masonry arches,typical components of URM historic structures,subjected to horizontal ground acceleration impulses. An analytical model is developed to describe the dynamic behaviour of the arch and is used to predict the combinations of impulse magnitudes and durations which lead to its collapse. The model considers impact of the rigid blocks through several cycles of motion, illustrating that failure can occur at lower ground accelerations than previously believed. The resulting failure domains are of potential use for design and assessment purposes. Predictions of the analytical model are compared with results of numerical modelling by the distinct element method, and the good agreement between results validates the analytical model and at the same time confirms the potential of the distinct element framework as a method of evaluating complex URM structures under dynamic loading. Copyright © 2007 John Wiley & Sons, Ltd. [source] |