Distribution by Scientific Domains
Distribution within Earth and Environmental Science

Kinds of Ridge

  • alveolar ridge
  • apical ectodermal ridge
  • ectodermal ridge
  • edentulous ridge
  • gakkel ridge
  • genital ridge
  • high ridge
  • indian ridge
  • lomonosov ridge
  • mid-atlantic ridge
  • mid-ocean ridge
  • moraine ridge
  • mountain ridge
  • oak ridge
  • residual ridge
  • rete ridge
  • subtropical ridge
  • transverse ridge

  • Terms modified by Ridge

  • ridge augmentation
  • ridge basalt
  • ridge crest
  • ridge defect
  • ridge pattern
  • ridge preservation
  • ridge regression
  • ridge resorption
  • ridge system

  • Selected Abstracts

    Assessing the Effectiveness of Reserve Acquisition Programs in Protecting Rare and Threatened Species

    Lake Wales Ridge (Florida); especies en peligro; índice de protección; Lista Roja IUCN; matorral Abstract:,Measuring the effectiveness of reserve networks is essential to ensure that conservation objectives such as species persistence are being met. We devised a new approach for measuring the effectiveness of land conservation in protecting rare and threatened species and applied it to an ecosystem of global significance. We compiled detailed global distributional data for 36 rare and threatened plants and animals found in the Lake Wales Ridge ecosystem in central Florida (U.S.A.). For each species, we developed a set of protection indices based in part on criteria used to categorize species for the World Conservation Union's Red List. We calculated protection indexes under three different conservation scenarios: a past scenario, which assumed recent, major land-acquisition efforts never occurred; a current scenario, which assumed no additional areas are saved beyond what is currently protected; and a targeted scenario, which assumed all of the remaining areas targeted for protection are eventually acquired. This approach enabled us to quantify the progress, in terms of reduced risk of extinction, that conservationists have made in protecting target species. It also revealed the limited success these land-acquisition efforts have had in reducing those extinction risks associated with loss of habitat or small geographic ranges. Many species of the Lake Wales Ridge will remain at high risk of extinction even if planned land-acquisition efforts are completely successful. By calculating protection indexes with and without each site for all imperiled species, we also quantified the contribution of each protected area to the conservation of each species, enabling local conservation decisions to be made in the context of a larger (global) perspective. The protection index approach can be adapted readily to other ecosystems with multiple rare and threatened species. Resumen:,La cuantificación de la efectividad de las redes de reservas es esencial para asegurar que objetivos, como la persistencia de especies, se cumplan. Diseñamos un nuevo método para medir la efectividad de la conservación de tierras en la protección de especies raras y amenazadas y lo aplicamos a un ecosistema de importancia global. Compilamos datos detallados de la distribución global de 36 especies raras y amenazadas de plantas y animales que se encuentran en el ecosistema de la Lake Wales Ridge en el centro de Florida (E.U.A.). Para cada especie desarrollamos un conjunto de índices de protección basado parcialmente en criterios utilizados para clasificar especies para la Lista Roja de la Unión Mundial para la Naturaleza. Calculamos los índices de protección bajo tres escenarios de conservación distintos: un escenario pasado, que asumía que los esfuerzos recientes de adquisición de tierras nunca ocurrieron; un escenario actual, que asumía que no se protegen áreas adicionales a las ya conservadas; y un escenario deseado, que asumía que todas las áreas consideradas para ser protegidas son adquiridas eventualmente. Este método nos permitió cuantificar el progreso, en términos de la reducción del riesgo de extinción, en la protección de las especies obtenido por conservacionistas. También reveló el éxito limitado de los esfuerzos de adquisición de tierras en la disminución de los riesgos de extinción asociados con la pérdida de hábitat o con rangos geográficos pequeños. Se pronosticó que muchas especies de la Lake Wales Ridge permanecerán en alto riesgo aun si los esfuerzos de adquisición de tierra planificados son completamente exitosos. Al calcular los índices de protección con y sin cada sitio para todas las especies en peligro, también cuantificamos la contribución de cada área protegida a la conservación de cada especie, lo que permite que las decisiones de conservación se tomen en el contexto de una perspectiva mayor (global). El método del índice de protección se puede adaptar fácilmente a otros ecosistemas con múltiples especies raras y amenazadas. [source]

    Ecohydrological controls on snowmelt partitioning in mixed-conifer sub-alpine forests

    ECOHYDROLOGY, Issue 2 2009
    Noah P. Molotch
    Abstract We used co-located observations of snow depth, soil temperature, and moisture and energy fluxes to monitor variability in snowmelt infiltration and vegetation water use at mixed-conifer sub-alpine forest sites in the Valles Caldera, New Mexico (3020 m) and on Niwot Ridge, Colorado (3050 m). At both sites, vegetation structure largely controlled the distribution of snow accumulation with 29% greater accumulation in open versus under-canopy locations. Snow ablation rates were diminished by 39% in under-canopy locations, indicating increases in vegetation density act to extend the duration of the snowmelt season. Similarly, differences in climate altered snow-season duration, snowmelt infiltration and evapotranspiration. Commencement of the growing season was coincident with melt-water input to the soil and lagged behind springtime increases in air temperature by 12 days on average, ranging from 2 to 33 days under warmer and colder conditions, respectively. Similarly, the timing of peak soil moisture was highly variable, lagging behind springtime increases in air temperature by 42 and 31 days on average at the Colorado and New Mexico sites, respectively. Latent heat flux and associated evaporative loss to the atmosphere was 28% greater for the year with earlier onset of snowmelt infiltration. Given the large and variable fraction of precipitation that was partitioned into water vapour loss, the combined effects of changes in vegetation structure, climate and associated changes to the timing and magnitude of snowmelt may have large effects on the partitioning of snowmelt into evapotranspiration, surface runoff and ground water recharge. Copyright © 2009 John Wiley & Sons, Ltd. [source]

    GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer

    Joy D. Van Nostrand
    Summary A pilot-scale system was established for in situ biostimulation of U(VI) reduction by ethanol addition at the US Department of Energy's (DOE's) Field Research Center (Oak Ridge, TN). After achieving U(VI) reduction, stability of the bioreduced U(IV) was evaluated under conditions of (i) resting (no ethanol injection), (ii) reoxidation by introducing dissolved oxygen (DO), and (iii) reinjection of ethanol. GeoChip, a functional gene array with probes for N, S and C cycling, metal resistance and contaminant degradation genes, was used for monitoring groundwater microbial communities. High diversity of all major functional groups was observed during all experimental phases. The microbial community was extremely responsive to ethanol, showing a substantial change in community structure with increased gene number and diversity after ethanol injections resumed. While gene numbers showed considerable variations, the relative abundance (i.e. percentage of each gene category) of most gene groups changed little. During the reoxidation period, U(VI) increased, suggesting reoxidation of reduced U(IV). However, when introduction of DO was stopped, U(VI) reduction resumed and returned to pre-reoxidation levels. These findings suggest that the community in this system can be stimulated and that the ability to reduce U(VI) can be maintained by the addition of electron donors. This biostimulation approach may potentially offer an effective means for the bioremediation of U(VI)-contaminated sites. [source]

    Widespread occurrence of an intranuclear bacterial parasite in vent and seep bathymodiolin mussels

    Frank U. Zielinski
    Summary Many parasitic bacteria live in the cytoplasm of multicellular animals, but only a few are known to regularly invade their nuclei. In this study, we describe the novel bacterial parasite "Candidatus Endonucleobacter bathymodioli" that invades the nuclei of deep-sea bathymodiolin mussels from hydrothermal vents and cold seeps. Bathymodiolin mussels are well known for their symbiotic associations with sulfur- and methane-oxidizing bacteria. In contrast, the parasitic bacteria of vent and seep animals have received little attention despite their potential importance for deep-sea ecosystems. We first discovered the intranuclear parasite "Ca. E. bathymodioli" in Bathymodiolus puteoserpentis from the Logatchev hydrothermal vent field on the Mid-Atlantic Ridge. Using primers and probes specific to "Ca. E. bathymodioli" we found this intranuclear parasite in at least six other bathymodiolin species from vents and seeps around the world. Fluorescence in situ hybridization and transmission electron microscopy analyses of the developmental cycle of "Ca. E. bathymodioli" showed that the infection of a nucleus begins with a single rod-shaped bacterium which grows to an unseptated filament of up to 20 ,m length and then divides repeatedly until the nucleus is filled with up to 80 000 bacteria. The greatly swollen nucleus destroys its host cell and the bacteria are released after the nuclear membrane bursts. Intriguingly, the only nuclei that were never infected by "Ca. E. bathymodioli" were those of the gill bacteriocytes. These cells contain the symbiotic sulfur- and methane-oxidizing bacteria, suggesting that the mussel symbionts can protect their host nuclei against the parasite. Phylogenetic analyses showed that the "Ca. E. bathymodioli" belongs to a monophyletic clade of Gammaproteobacteria associated with marine metazoans as diverse as sponges, corals, bivalves, gastropods, echinoderms, ascidians and fish. We hypothesize that many of the sequences from this clade originated from intranuclear bacteria, and that these are widespread in marine invertebrates. [source]

    A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge

    Sébastien Duperron
    Summary Bathymodiolus azoricus and Bathymodiolus puteoserpentis are symbiont-bearing mussels that dominate hydrothermal vent sites along the northern Mid-Atlantic Ridge (MAR). Both species live in symbiosis with two physiologically and phylogenetically distinct Gammaproteobacteria: a sulfur-oxidizing chemoautotroph and a methane-oxidizer. A detailed analysis of mussels collected from four MAR vent sites (Menez Gwen, Lucky Strike, Rainbow, and Logatchev) using comparative 16S rRNA sequence analysis and fluorescence in situ hybridization (FISH) showed that the two mussel species share highly similar to identical symbiont phylotypes. FISH observations of symbiont distribution and relative abundances showed no obvious differences between the two host species. In contrast, distinct differences in relative symbiont abundances were observed between mussels from different sites, indicating that vent chemistry may influence the relative abundance of thiotrophs and methanotrophs in these dual symbioses. [source]

    Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments

    Olivier Nercessian
    Summary To contribute to the identification of methanogens, methanotrophs and sulfate-reducing bacteria (SRB) in microbial communities from the 13°N (East Pacific Rise) and Rainbow (Mid-Atlantic Ridge) hydrothermal vent fields, we investigated the diversity of mcrA, pmoA and dsrAB genes sequences. Clone libraries were obtained using DNA isolated from fragments of diffuse vents, sediment and in situ samplers. The clones were categorized by restriction fragment length polymorphism, and representatives of each group were sequenced. Sequences were related to that of hyperthermophilic (order Methanopyrales and family Methanocaldococcaceae), thermophilic and mesophilic (family Methanococcaceae) methanogens, thermophilic (proposed genus ,Methylothermus') and mesophilic type I methanotrophs, and hyperthermophilic (order Archaeoglobales), thermophilic (order Thermodesulfobacteriales) and mesophilic (family Desulfobulbaceae) SRB. Several of the obtained sequences were distantly related to the genes of cultivated organisms, providing evidence of the existence of novel lineages in the three functional groups. This study provides for the first time an insight into the diversity of several functional genes of deep-sea hydrothermal system microorganisms. [source]

    Geoarchaeology of Tonga: Geotectonic and geomorphic controls

    William R. Dickinson
    Ancient settlement patterns in central Tonga, at the southeastern limit of Lapita expansion into Remote Oceania ,3 ka, were conditioned by island geomorphology as controlled by spatial geotectonic features and temporal changes in relative sea level on island coasts. Volcanic islands provided lithic resources, but human populations were concentrated on nonvolcanic forearc islands underlain by limestone covered by airfall tephra blankets that weathered to form rich agricultural soils and eroded to provide terrigenous sand for ceramic temper. The forearc islands lie along the Tonga platform, a linear tract of shoals uplifted diachronously by subduction of the buoyant Louisville Ridge at the Tonga Trench. Multiple transverse structural discontinuities break the forearc into discrete structural blocks, some tectonically stable during late Holocene time but others undergoing postuplift subsidence. Understanding the paleoenvironmental settings of Tongan archaeological sites requires reconstructing the contrasting geologic histories of different forearc island clusters. © 2007 Wiley Periodicals, Inc. [source]

    Geomicrobiology of deep-sea deposits: estimating community diversity from low-temperature seafloor rocks and minerals

    GEOBIOLOGY, Issue 2 2003
    Daniel R. Rogers
    ABSTRACT The role of deep-sea microbial communities in the weathering of hydrothermal vent deposits is assessed using mineralogical and molecular biological techniques. The phylogenetic diversity of varied deep-sea bare rock habitats associated with the oceanic spreading centre at the Juan de Fuca Ridge was accessed using restriction fragment length polymorphism (RFLP) and rDNA sequencing. The mineralogical composition of the deposits used for phylogenetic analysis was determined by X-ray diffraction in order to determine the proportion and composition of sulphide minerals, and to determine degree of alteration associated with each sample. RFLP analyses resulted in 15 unique patterns, or Operational Taxonomic Units (OTUs). Most environments examined were dominated by only one or two OTUs, which often comprised approximately 60% of the rDNA clones generated from that environment. Only one environment, the Mound, had a representative rDNA clone from every OTU identified in this study. For one other environment, ODP sediments, rDNA clones were all contained in a single OTU. The diversity of the microbial community is found to decrease with decreasing reactivity of the sulphide component in the samples and with increasing presence of alteration products. Phylogenetic analyses reveal that OTUs contain representatives of the epsilon-, beta- and gamma-subdivisions of the Proteobacteria. OTU1, which dominates clone libraries from every environment and is increasingly dominant with increasing rock alteration, is closely related to a group of chemolithoautotrophic iron-oxidizing bacteria that have been recently isolated from the deep sea. The apparent abundance and widespread distribution within the samples examined of the putative iron-oxidizing bacteria that may be represented by OTU1 suggests that this physiological group could play an important role in rock-weathering and carbon fixation at the seafloor. [source]

    Microbial diversity of a sulphide spire located in the Edmond deep-sea hydrothermal vent field on the Central Indian Ridge

    GEOBIOLOGY, Issue 2 2003
    Joost Hoek
    ABSTRACT A culture-independent molecular phylogenetic survey was carried out for a bacterial and archaeal community of a mineralized crust coating a sulphide spire, which was collected from the Edmond vent field (23° S, 69° E, 3300 m depth) on the Central Indian Ridge. Small-subunit rRNA genes (16S rDNA) were amplified from environmental DNA by PCR utilizing Bacteria-specific, and Archaea-specific 16S rDNA primers. PCR products were cloned and 26 bacterial and nine archaeal unique sequence types (phylotypes) were identified from 150 clones analysed by restriction fragment length polymorphism, representing eight and four distinct lineages, respectively. The majority (>90%) of the bacterial phylotypes group with the ,-Proteobacteria and confirms the global prevalence of ,-Proteobacteria in deep-sea hydrothermal environments. Among the ,-Proteobacteria, >40% of the phylotypes were closely related to the recently isolated deep-sea vent thermophilic chemolithoautotrophic sulphur-reducer, Nautilia lithotrophica. A single bacterial sequence was nearly identical (99% similarity) to the thermophilic hydrogen-oxidizing Hydrogenobacter thermolithotrophum, and is the first report of Hydrogenobacter at deep-sea hydrothermal vents. A majority (97%) of the archaeal phylotypes grouped with the ,Deep-sea Hydrothermal Vent Euryarchaeotal Group', a phylogenetic lineage of uncultured Archaea that have only been reported from other deep-sea hydrothermal vents on the Mid-Atlantic Ridge, East Pacific Rise, Juan de Fuca Ridge, Isu,Ogasawara Arc, Okinawa Trough and the Manus Basin. A single sequence was closely related to the hyperthermophilic sulphur-reducing Thermococcales frequently found in diverse deep-sea vent environments. Scanning electron micrographs of the mineralized crust reveal abundant filamentous, rod and coccoidal forms encased in sulphur and sulphide mineral precipitate, suggesting that the thermophilic chemolithoautorophs and sulphide-producing heterotrophs may influence the architecture and sulphur cycling of the sulphide spire. [source]


    ABSTRACT. The presence of a seasonal snowpack in alpine environments can amplify climate signals. A conceptual model is developed for the response of alpine ecosystems in temperate, midlatitude areas to changes in energy, chemicals, and water, based on a case study from Green Lakes Valley,Niwot Ridge, a headwater catchment in the Colorado Front Range. A linear regression shows the increase in annual precipitation of about 300 millimeters from 1951 to 1996 to be significant. Most of the precipitation increase has occurred since 1967. The annual deposition of inorganic nitrogen in wetfall at the Niwot Ridge National Atmospheric Deposition Program site roughly doubled between 1985,1988 and 1989,1992. Storage and release of strong acid anions, such as those from the seasonal snowpack in an ionic pulse, have resulted in episodic acidification of surface waters. These biochemical changes alter the quantity and quality of organic matter in high-elevation catchments of the Rocky Mountains. Affecting the bottom of the food chain, the increase in nitrogen deposition may be partly responsible for the current decline of bighorn sheep in the Rocky Mountains. [source]

    Sedimentary and crustal structure from the Ellesmere Island and Greenland continental shelves onto the Lomonosov Ridge, Arctic Ocean

    H. Ruth Jackson
    SUMMARY On the northern passive margin of Ellesmere Island and Greenland, two long wide-angle seismic reflection/refraction (WAR) profiles and a short vertical incident reflection profile were acquired. The WAR seismic source was explosives and the receivers were vertical geophones placed on the sea ice. A 440 km long North-South profile that crossed the shelf, a bathymetric trough and onto the Lomonosov Ridge was completed. In addition, a 110 km long profile along the trough was completed. P -wave velocity models were created by forward and inverse modelling. On the shelf modelling indicates a 12 km deep sedimentary basin consisting of three layers with velocities of 2.1,2.2, 3.1,3.2 and 4.3,5.2 km s,1. Between the 3.1,3.2 km s,1 and 4.3,5.2 km s,1 layers there is a velocity discontinuity that dips seaward, consistent with a regional unconformity. The 4.3,5.2 km s,1 layer is interpreted to be Palaeozoic to Mesozoic age strata, based on local and regional geological constraints. Beneath these layers, velocities of 5.4,5.9 km s,1 are correlated with metasedimentary rocks that outcrop along the coast. These four layers continue from the shelf onto the Lomonosov Ridge. On the Ridge, the bathymetric contours define a plateau 220 km across. The plateau is a basement high, confirmed by short reflection profiles and the velocities of 5.9,6.5 km s,1. Radial magnetic anomalies emanate from the plateau indicating the volcanic nature of this feature. A lower crustal velocity of 6.2,6.7 km s,1, within the range identified on the Lomonosov Ridge near the Pole and typical of rifted continental crust, is interpreted along the entire line. The Moho, based on the WAR data, has significant relief from 17 to 27 km that is confirmed by gravity modelling and consistent with the regional tectonics. In the trough, Moho shallows eastward from a maximum depth of 19,16 km. No indication of oceanic crust was found in the bathymetric trough. [source]

    Seamount volcanism along the Gakkel Ridge, Arctic Ocean

    James R. Cochran
    SUMMARY The Gakkel Ridge in the Arctic Ocean is the slowest spreading portion of the global mid-ocean ridge system. Total spreading rates vary from 12.8 mm yr,1 near Greenland to 6.5 mm yr,1 at the Siberian margin. Melting models predict a dramatic decrease in magma production and resulting crustal thickness at these low spreading rates. At slow spreading ridges, small volcanic seamounts are a dominant morphologic feature of the rift valley floor and an important mechanism in building the oceanic crust. This study quantitatively investigates the extent, nature and distribution of seamount volcanism at the ultraslow Gakkel Ridge, the manner in which it varies along the ridge axis and the relationship of the volcanoes to the larger scale rift morphology. A numerical algorithm is used to identify and characterize isolated volcanic edifices by searching gridded swath-bathymetry data for closed concentric contours protruding above the surrounding seafloor. A maximum likelihood model is used to estimate the total number of seamounts and the characteristic height within different seamount populations. Both the number and size of constructional volcanic features is greatly reduced at the Gakkel Ridge compared with the Mid-Atlantic Ridge (MAR). The density of seamounts (number/area) on the rift valley floor of the Western Volcanic Zone (WVZ) is ,55% that of the MAR. The observed volcanoes are also much smaller, so, the amount of erupted material is greatly reduced compared with the MAR. However, the WVZ is still able to maintain a MAR-like morphology with axial volcanic ridges, volcanoes scattered on the valley floor and rift valley walls consisting of high-angle faults. Seamount density at the Eastern Volcanic Zone (EVZ) is ,45% that of the WVZ (,25% that of the MAR). Seamounts are clustered at the widely spaced magmatic centres characteristic of the EVZ, although some seamounts are found between magmatic centres. These seamounts tend to be located at the edge of the rift valley or on the valley walls rather than on the valley floor. Seamounts in the Sparsely Magmatic Zone (SMZ) are located almost entirely at the 19°E magmatic centre with none observed within a 185 km-long portion of the rift valley floor. The EVZ and SMZ appear to display a mode of crustal accretion, characterized by extreme focusing of melt to the magmatic centres. Magmas erupted between the magmatic centres appear to have ascended along faults. This is very different from what is observed at the WVZ (or the MAR), and there is a threshold transition between the two modes of crustal accretion. At the Gakkel Ridge, the location of the transition appears to be localized by a boundary in mantle composition. [source]

    The sedimentary structure of the Lomonosov Ridge between 88°N and 80°N

    Wilfried Jokat
    SUMMARY While the origin of the 1800-km-long Lomonosov Ridge (LR) in the Central Arctic Ocean is believed to be well understood, details on the bathymetry and especially on the sediment and crustal structure of this unique feature are sparse. During two expeditions in 1991 and 1998 into the Central Arctic Ocean several high quality seismic lines were collected along the margin of the ridge and in the adjacent Makarov Basin (MB). The lines collected between 87°36,N and 80°N perpendicular to and along the LR show a sediment starved continental margin with a variety of geological structures. The different features may reflect the different geological histories of certain ridge segments and/or their different subsidence histories. The sediments in the deep MB have thicknesses up to 2.2 km (3 s TWT) close to the foot of the ridge. At least in part basement reflections characteristics suggest oceanic crust. The acoustically stratified layers are flat lying, except in areas close to the ridge. Seismic units on the LR can be divided into two units based on refraction velocity data and the internal geometry of the reflections. Velocities <3.0 km s,1 are considered to represent Cenozoic sediments deposited after the ridge subsided below sea level. Velocities >4.0 km s,1 are associated with faulted sediments at deeper levels and may represent acoustic basement, which was affected by the Late Cretaceous/Early Cenozoic rift events. Along large parts of the ridge the transition of the two units is associated with an erosional unconformity. Close to the Laptev Sea such an erosional surface may not be present, because of the initial great depths of the rocks. Here, the deeper strata are affected by tectonism, which suggests some relative motion between the LR and the Laptev Shelf. Stratigraphic correlation with the Laptev Sea Shelf suggests that the ridge has not moved as a separate plate over the past 10 Myr. The seismic and regional gravity data indicate that the ridge broadens towards the Laptev Shelf. Although the deeper structure may be heavily intruded and altered, the LR appears to extend eastwards as far as 155°E, a consequence of a long-lived Late Cretaceous rift event. The seismic data across LR support the existence of iceberg scours in the central region of the ridge as far south as 81°N. However, no evidence for a large erosional events due to a more than 1000-m-thick sea ice cover is visible from the data. South of 85°N the seismic data indicate the presence of a bottom simulating reflector along all lines. [source]

    Refined spreading history at the Southwest Indian Ridge for the last 96 Ma, with the aid of satellite gravity data

    A. Bernard
    SUMMARY The spreading history of the oceans is modelled mostly by using magnetic anomalies and the fracture zone geometry. The high-quality, satellite-derived gravity data, that became available in recent years, reveal the details of fracture zones, which can be used as flow lines to control spreading models. We have applied this approach to the Southwest Indian Ridge (SWIR) in order to refine its spreading history. This is particularly useful for the period of complex spreading between magnetic anomalies 33 and 23, where the magnetic anomalies alone cannot resolve the detailed spreading history. We find four main stages in the spreading history of the SWIR since 96 Ma, including two that were not noted previously, between 96 Ma and anomaly 33 (76.3 Ma) and between anomalies 23o (51.7 Ma) and 18o (40.1 Ma; o denotes old boundaries of normal magnetization period). We also find that the start of the period of complex spreading was at anomaly 33, somewhat earlier than previously proposed. We discuss the characteristics of the extension that the old transform faults underwent during the complex spreading phase, in response to the counterclockwise rotation of spreading. New transform faults appeared at that time, considerably widening the transform zones. [source]

    Contemporary kinematics of the southern Aegean and the Mediterranean Ridge

    Corné Kreemer
    SUMMARY This study focuses on the kinematics of the southern Aegean and the Mediterranean Ridge (MR). A quantification of the deformation of the MR is essential for both evaluating physical models of accretionary wedges in general and for obtaining a self-consistent model of the surface deformation over the entire Nubia,Eurasia (NU,EU) plate boundary zone in the eastern Mediterranean. Previous kinematic studies have not properly considered the deformation field south of the Hellenic arc. Although this study focuses on the deformation field of the MR, we also discuss the kinematics of the southern Aegean, because the geometry and movement of the Hellenic arc determine to a large extent the kinematic boundary conditions for kinematic studies of the MR. We calculate a continuous velocity and strain rate field by interpolating model velocities that are fitted in a least-squares sense to published Global Positioning System (GPS) velocities. In the interpolation, we use information from a detailed data set of onshore and offshore active faulting to place constraints on the expected style and direction of the model strain rate field. In addition, we use the orientations of tracks left by seamounts travelling into the wedge to further constrain the offshore deformation pattern. Our model results highlight the presence of active shear partitioning within the Mediterranean ridge. High compressional strain rates between the ridge crest and the deformation front accommodate approximately 60,70 per cent of the total motion over the wedge, and the outward growth rate of the frontal thrust is , 4 mm yr,1. Strain partitioning within the wedge leads to 19,23 mm yr,1 of dextral motion at the wedge,backstop contact of the western MR, whereas the Pliny and Strabo trenches in the eastern MR accommodate 21,23 mm yr,1 of sinistral motion. The backstop of the western MR is kinematically part of the southern Aegean, which moves as a single block [the Aegean block (AE)] at 33,34 mm yr,1 in the direction of S24°W ± 1° towards stable Nubia (NU). Our model confirms that there is a clear divergence between the western and eastern Hellenic arc and we argue for a causal relation between the outward motion of the arc and the gradient in the regional geoid anomaly. Our results suggest that a significant driving source of the surface velocity field lies south of the Hellenic arc and only for the southeastern Aegean could there be some effect as a result of gravitational collapse associated with density differences within the overriding plate. [source]

    The seismic anomaly beneath Iceland extends down to the mantle transition zone and no deeper

    G. R. Foulger
    A 3-D teleseismic tomography image of the upper mantle beneath Iceland of unprecedented resolution reveals a subvertical low wave speed anomaly that is cylindrical in the upper 250 km but tabular below this. Such a morphological transition is expected towards the bottom of a buoyant upwelling. Our observations thus suggest that magmatism at the Iceland hotspot is fed by flow rising from the mantle transition zone. This result contributes to the ongoing debate about whether the upper and lower mantles convect separately or as one. The image also suggests that material flows outwards from Iceland along the Reykjanes Ridge in the upper 200 km, but is blocked in the upper 150 km beneath the Tjornes Fracture Zone. This provides direct observational support for the theory that fracture zones dam lateral flow along ridges. [source]

    Crustal underplating and its implications for subsidence and state of isostasy along the Ninetyeast Ridge hotspot trail

    Ingo Grevemeyer
    Recent seismic field work has revealed high lower-crustal velocities under Ninetyeast Ridge, Indian Ocean, indicating the presence of crustal underplating (Grevemeyer et al. 2000). We used results from Ocean Drilling Program (ODP) drill cores and cross-spectral analysis of gravity and bathymetric data to study the impact of the underplating body on the subsidence history and the mode of isostatic compensation along Ninetyeast Ridge. Compared with the adjacent Indian basin, the subsidence of Ninetyeast Ridge is profoundly anomalous. Within the first few millions of years after crustal emplacement the ridge subsided rapidly. Thereafter, however, subsidence slowed down significantly. The most reliable model of isostasy suggests loading of a thin elastic plate on and beneath the seafloor. Isostatic compensation of subsurface loading occurs at a depth of about 25 km, which is in reasonably good agreement with seismic constraints. Subsurface loading is inherently associated with buoyant forces acting on the lithosphere. The low subsidence may therefore be the superposition of cooling of the lithosphere and uplift due to buoyant material added at the base of the crust. A model including prolonged crustal growth in the form of subcrustal plutonism may account for all observations. [source]

    A New Brand in Imaging

    Five Imaging Companies Formed MAG In Late 200
    The Microimaging Applications Group (MAG) comprises five imaging technology leaders: Gatan, Media Cybernetics, Photometrics, QImaging, and MAG Biosystems. These partners work independently as well as in synergy to offer an unparalleled range of solutions for microimaging applications. Michael Reubold spoke with Steven Ridge, MAG's Vice President of Marketing about the concept and strategy behind the formation of MAG. [source]

    Weather regimes and sea surge variations over the Gulf of Lions (French Mediterranean coast) during the 20th century

    A. Ullmann
    Abstract Hourly sea surge variations observed at three tide-gauge stations (Grau-de-la-Dent(GD) located in the Rhône Delta, Sète(SE), and Port-Vendres(PV)) around the Gulf of Lions are strongly correlated during the wintertime period (October to March) of 1986-1995. Relationships between the early morning (6 a.m. UTC) sea surge observed at Grau-de-la-Dent station and five weather regimes,Zonal (ZO), East-Atlantic (EA), Greenland Above (GA), Blocking (BL), and Atlantic Ridge (AR),over the northeast Atlantic and Europe (40°W,40°E, 30 ,70°N) are analysed during the wintertime period of 1905-2002. More than 75% of sea surges , 40 cm occur during both of the weather regimes associated with a negative North Atlantic Oscillation(NAO) phase (41.2 and 34% during BL and GA weather regimes, respectively), ahead of low pressure travelling usually southeastward, on a stormtrack shifted south of 55°N. The relationships between monthly/seasonal frequency of weather regime and 75th percentile of sea surge at GD tend to strengthen during the 20th century: for example, correlation between seasonal frequencies of GA and 75th percentile of sea surge increases from 0.07 (not significant) in 1905,40 to 0.83 (signifiicant at the one-sided 99% level) in 1974,2002. Copyright © 2007 Royal Meteorological Society [source]

    The impact of El Niño,southern oscillation upon weather regimes over Europe and the North Atlantic during boreal winter

    Vincent Moron
    Abstract The influence of the warm and cold sea-surface temperatures in the eastern and central equatorial Pacific associated with El Niño,southern oscillation (ENSO) on the probability of occurrence of weather regimes (WRs) over the North Atlantic sector is investigated for the period November,March. Five WRs are identified from daily sea-level pressure anomalies (SLPAs) during 119 winters (1882,2000) over this sector by applying cluster analysis: the positive North Atlantic oscillation (NAO; called ZO for zonal) and negative NAO (called WBL for west blocking) patterns; GA (for Greenland anticyclone), with a positive SLPA shifted north of 60° N; EA (for European anticyclone) with a positive SLPA over Europe but enhanced north,south SLPA gradient over the western and central North Atlantic; and AR (for Atlantic Ridge) with a positive (negative) SLPA over the central North Atlantic (northern and central Europe). El Niño winters are associated with a significant increase (decrease) in the prevalence of ZO (WBL) in November,December and a significant increase (decrease) in the prevalence of GA and WBL (EA and ZO) in January,March. During La Niña winters, ZO (WBL and AR) occurs significantly less (more) frequently in November,December, and GA and WBL (EA and AR) are less (more) frequent in January,March. So, the anomalies of the WR frequencies are almost inverted between November,December and January,March. The response of the WR frequencies to ENSO extremes is most pronounced in February. On the inter- and multi-decadal time scales, the typical ENSO signals tend to be stronger during preferred phases of the basinwide westerlies, especially in January,March. The typical El Niño signal in January,March (e.g. more GA and WBL and less ZO and EA than normal) is strong when westerlies are slower than normal, around 1900, 1915 and mainly from 1930 to 1970. The generally reversed association during La Niña winters (e.g. more EA and AR and less GA and WBL than normal) in January,March is strong mainly when westerlies are faster than normal. Anomalies are weaker and quite different during ,slow westerlies,La Niña' and ,fast westerlies,El Niño' January,March winters. Such a modulation also appears in November,December with reversed association (i.e. stronger ENSO signal during ,slow westerlies,La Niña' and ,fast westerlies,El Niño' November,December winters), but the difference between the slow and fast westerlies phases is weaker than in January,March. Copyright © 2003 Royal Meteorological Society [source]

    Mortality date estimation using fetal pronghorn remains

    J. N. Fenner
    Abstract Pronghorn (Antilocapra americana) fetal remains are sometimes recovered from archaeological contexts. Pronghorn have consistent reproductive schedules so their remains may provide information on seasonality of site occupation and number of mortality events. To investigate the reliability of fetal remains for seasonality and mortality event assessment, bone size and tooth eruption were measured in a sample of modern fetal pronghorn remains with known mortality dates. Results indicate a strong correlation between bone size and mortality date, but no significant correlation between tooth eruption level and mortality date. Fetal bone size was used to estimate a late April or early May mortality date at both the Oyster Ridge (48UT35) and Trappers Point (48SU1006) archaeological sites. The number of mortality events at Trappers Point was also investigated. Copyright © 2007 John Wiley & Sons, Ltd. [source]

    Mantle heterogeneity beneath the Antarctic,Phoenix Ridge off Antarctic Peninsula

    ISLAND ARC, Issue 1 2008
    Sung-Hi Choi
    Abstract We determined the Sr, Nd and Pb isotopic compositions of basalts recovered from the Antarctic,Phoenix Ridge (APR), a fossil spreading center in the Drake Passage, Antarctic Ocean, in order to understand the nature of the subridge mantle source. There are no known hotspots in close proximity to the site. We observe that small-scale isotopic heterogeneity exists at a shallow level in the subaxial mantle of the APR. Enriched (E-type) mid-ocean ridge basalts (MORB) coexist with normal (N-type) MORB in this region. The E-type basalts are: (i) relatively young compared to the N-type samples; (ii) were erupted after the extinction of the APR; and (iii) have been generated by low-degree partial melting of an enriched mantle source. Extinction of the APR likely caused the extent of partial melting in this region to decrease. We interpret that the geochemically enriched materials dispersed in the ambient depleted mantle were the first fraction to melt to form the E-type MORB. [source]

    Variation of crustal thickness in the Philippine Sea deduced from three-dimensional gravity modeling

    ISLAND ARC, Issue 3 2007
    Takemi Ishihara
    Abstract Crustal thickness of the northern to central Philippine Sea was gravimetrically determined on the simple assumption of four layers: seawater, sediments, crust and lithospheric mantle, with densities of 1030, 2300, 2800 and 3300 kg/m3, respectively. As for the correction of the regional gravity variation, a 15 km difference of the lithospheric thickness with a density difference of 50 kg/m3 against the asthenosphere below between both sides of the Kyushu-Palau Ridge was taken into consideration. Mantle Bouguer anomalies were calculated on the assumption of constant crustal thickness of 6 km, and then the crustal thickness was obtained by three-dimensional gravity inversion method. The results show occurrence of thin crust areas with a thickness of approximately 5 km in the southern part and at the western margin of the Shikoku Basin and also of thick crust areas in the northwestern and northeastern parts of the Parece Vela Basin. We suggest that these are because of the variation of magma supply at the time of sea floor spreading in the Shikoku and Parece Vela Basins, which is possibly related to the variation of spreading rate and enhanced magmatism near the past arc volcanic fronts. The results further show the occurrence of crust thinner than 5 km in the northeastern part of the West Philippine Basin, of crust thicker than 15 km in the Amami Plateau, the Daito and Oki-Daito Ridges, and also in the northern part of Kyushu-Palau Ridge, whereas the southern part of the Kyushu-Palau Ridge the crust is thicker than 10 km. It was also inferred that small basins in the Daito Ridge province have the thinnest oceanic crust of less than 5 km in the Kita-Daito Basin. [source]

    Fault configuration produced by initial arc rifting in the Parece Vela Basin as deduced from seismic reflection data

    ISLAND ARC, Issue 3 2007
    Mikiya Yamashita
    Abstract The Parece Vela Basin (PVB), which is a currently inactive back-arc basin of the Philippine Sea Plate, was formed by separation between the Izu-Ogasawara Arc (IOA) and the Kyushu-Palau Ridge (KPR). Elucidating the marks of the past back-arc opening and rifting is important for investigation of its crustal structure. To image its fault configurations and crustal deformation, pre-stack depth migration to multichannel seismic reflection was applied and data obtained by the Japan Agency for Marine-Earth Science and Technology and Metal Mining Agency of Japan and Japan National Oil Corporation (Japan Oil, Gas and Metals National Corporation). Salient results for the pre-stack depth-migrated sections are: (i) deep reflectors exist around the eastern margin of KPR and at the western margin of IOA down to 8 km depth; and (ii) normal fault zones distributed at the eastern margin of the KPR (Fault zone A) and the western margin of the IOA (Fault zone B) have a total displacement of greater than 500 m associated with synrift sediments. Additional normal faults (Fault zone C) exist 20 km east of the Fault zone B. They are covered with sediment, which indicates deposition of recent volcanic products in the IOA. According to those results: (i) the fault displacement of more than 500 m with respect to initial rifting was approximately asymmetric at 25 Ma based on PSDM profiles; and (ii) the faults had reactivated after 23 Ma, based on the age of deformed sediments obtained from past ocean drillings. The age of the base sediments corresponds to those of spreading and rotation after rifting in the PVB. Fault zone C is covered with thick and not deformed volcanogenic sediments from the IOA, which suggests that the fault is inactive. [source]

    Zircon sensitive high mass-resolution ion microprobe U,Pb and fission-track ages for gabbros and sheeted dykes of the Taitao ophiolite, Southern Chile, and their tectonic implications

    ISLAND ARC, Issue 1 2006
    Ryo Anma
    Abstract The Late Miocene,Pliocene Taitao ophiolite is composed of a complete sequence of classic oceanic lithosphere and is exposed approximately 50 km southeast of the Chile triple junction, where the Chile Ridge subducts beneath the South American Plate. Gabbros and ultramafic rocks are folded into a complex pattern, but only evidence for block rotation has been reported in the overriding sheeted dyke complex. In the present study, sensitive high mass-resolution ion microprobe U,Pb and fission-track dating methods were applied to zircon crystals separated from gabbros and sheeted dykes. Two sets of radiometric ages of gabbros range between 5.9 ± 0.4 and 5.6 ± 0.1 Ma. These ages coincide within their error ranges and imply rapid intrusion and cooling of gabbros. The U,Pb age of a dacite dyke intruded into the sheeted dyke complex was determined to be 5.2 ± 0.2 Ma. These data indicate that the magmas of the Taitao ophiolite were formed during the 6 Ma Chile Ridge collision event and emplaced in a shorter period than previously thought. A short segment of the Chile Mid-oceanic Ridge must have been emplaced during the 6 Ma event. [source]

    Variable age structure and apparent density dependence in survival of adult ungulates

    Marco Festa-Bianchet
    Summary 1Large herbivores have strongly age-structured populations. Because recruitment often decreases as population density increases, in unexploited populations the proportion of older adults may increase with density. Because survival senescence is typical of ungulates, ignoring density-dependent changes in age structure could lead to apparent density-dependence in adult survival. 2To test for density dependence in adult survival, we used data from three populations that underwent considerable changes in density. Bighorn sheep (Ovis canadensis) on Ram Mountain, Alberta, ranged from 94 to 232, mountain goats (Oreamnos americanus) on Caw Ridge, Alberta, varied from 81 to 147, and estimates of roe deer (Capreolus capreolus) older than 1 year at Chizé, France, ranged from 157 to 569. 3We used recent developments of capture,mark,recapture modelling to assess the response of adult survival to changes in density when age structure was and was not taken into account. 4Survival rates were 10,15% higher during the prime-age stage than during the senescent stage for all sex-species combinations. When adults were pooled into a single age class there was an apparent negative effect of density on female survival in bighorns and roe deer, and negative trends for female mountain goats, male roe deer and male bighorn sheep. When age class was taken into account, there were no significant effects of density on adult survival. Except for male mountain goats, the strength of density dependence was lower when age was taken into account. 5In ungulate populations, age structure is an important determinant of adult survival. Most reports of density dependence in adult survival may have been confounded by changes in age structure. [source]

    Biogeographic insights from a short-lived Palaeocene island in the Ninetyeast Ridge

    Susanne S. Renner
    No abstract is available for this article. [source]

    Phylogeography of the northern hogsucker, Hypentelium nigricans (Teleostei: Cypriniformes): genetic evidence for the existence of the ancient Teays River

    Peter B. Berendzen
    Abstract Aim, To assess the roles of dispersal and vicariance in shaping the present distribution and diversity within Hypentelium nigricans, the northern hogsucker (Teleostei: Cypriniformes). Location, Eastern United States. Methods, Parsimony analyses, Bayesian analyses, pairwise genetic divergence and mismatch plots are used to examine patterns of genetic variation across H. nigricans. Results, Species relationships within the genus Hypentelium were consistent with previous hypotheses. However, relationships between haplotypes within H. nigricans revealed two deeply divergent groups, a clade containing haplotypes from the New and Roanoke rivers (Atlantic Slope) plus Interior Highlands and upper Mississippi River and a clade containing haplotypes from the Eastern Highlands, previously glaciated regions of the Ohio and Wabash rivers, and the Amite and Homochitto rivers of south-western Mississippi. Main conclusions, The phylogenetic history of Hypentelium was shaped by old vicariant events associated with erosion of the Blue Ridge and separation of the Mobile and Mississippi river basins. Within H. nigricans two clades existed prior to the Pleistocene; a widespread clade in the pre-glacial Teays-Mississippi River system and a clade in Cumberland and Tennessee rivers. Pleistocene events fragmented the Teays-Mississippi fauna. Following the retreat of the glaciers H. nigricans dispersed northward into previously glaciated regions. These patterns are replicated in other clades of fishes and are consistent with some of the predictions of Mayden's (Systematic Zoology, 37, 329, 1988) pre-Pleistocene vicariance hypothesis. [source]

    Oceanic migration and spawning of anguillid eels

    K. Tsukamoto
    Many aspects of the life histories of anguillid eels have been revealed in recent decades, but the spawning migrations of their silver eels in the open ocean still remains poorly understood. This paper overviews what is known about the migration and spawning of anguillid species in the ocean. The factors that determine exactly when anguillid eels will begin their migrations are not known, although environmental influences such as lunar cycle, rainfall and river discharge seem to affect their patterns of movement as they migrate towards the ocean. Once in the ocean on their way to the spawning area, silver eels probably migrate in the upper few hundred metres, while reproductive maturation continues. Although involvement of a magnetic sense or olfactory cues seems probable, how they navigate or what routes they take are still a matter of speculation. There are few landmarks in the open ocean to define their spawning areas, other than oceanographic or geological features such as oceanic fronts or seamounts in some cases. Spawning of silver eels in the ocean has never been observed, but artificially matured eels of several species have exhibited similar spawning behaviours in the laboratory. Recent collections of mature adults and newly spawned preleptocephali in the spawning area of the Japanese eel Anguilla japonica have shown that spawning occurs during new moon periods in the North Equatorial Current region near the West Mariana Ridge. These data, however, show that the latitude of the spawning events can change among months and years depending on oceanographic conditions. Changes in spawning location of this and other anguillid species may affect their larval transport and survival, and appear to have the potential to influence recruitment success. A greater understanding of the spawning migration and the choice of spawning locations by silver eels is needed to help conserve declining anguillid species. [source]

    Sympatric spawning of Anguilla marmorata and Anguilla japonica in the western North Pacific Ocean

    M. Kuroki
    Extensive collections were made of the larvae of the temperate Japanese eel Anguilla japonica and the tropical giant mottled eel Anguilla marmorata in an overlapping area of the North Equatorial Current region of the western North Pacific Ocean. Collections of 189 A. marmorata and > 2500 A. japonica larvae during nine surveys from 1991 to 2007 showed that these two anguillid eels have similar spawning areas just west of the southern West Mariana Ridge. In July to August 2006 and August 2007, morphologically and genetically identified A. marmorata preleptocephali were mainly collected between 14·5,15° N and 142,142·5° E, where A. japonica preleptocephali were also caught in some of the same net tows. Fewer A. marmorata preleptocephali, however, were collected (n = 31) compared to those of A. japonica (n = c. 165), and fewer small larvae of A. marmorata were collected per tow than A. japonica (n = 1,10 and 1,294, respectively), suggesting relatively smaller spawning aggregations of A. marmorata. The distribution of preleptocephali and small larvae was wider in longitude in A. marmorata (131, 143° E) than in A. japonica (137,143° E), while the latitudinal range was almost the same (12,17° N). Although spawning by these two species overlaps both spatially and temporally, the tropical eels of the North Pacific population of A. marmorata probably have a much longer spawning season with fewer spawners, at least in summer, and recruit to a much wider latitudinal range of growth habitats. [source]